
i.MX 6Solo/6DualLite Linux Reference
Manual

Document Number: IMX6SDLLXRM
Rev L3.0.35_4.1.0, 09/2013

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
About This Book

1.1 Audience...23

1.1.1 Conventions...23

1.1.2 Definitions, Acronyms, and Abbreviations..23

Chapter 2
Introduction

2.1 Overview...27

2.1.1 Software Base..27

2.1.2 Features..27

Chapter 3
Machine Specific Layer (MSL)

3.1 Introduction...33

3.2 Interrupts (Operation)...34

3.2.1 Interrupt Hardware Operation..34

3.2.2 Interrupt Software Operation...34

3.2.3 Interrupt Features...35

3.2.4 Interrupt Source Code Structure..35

3.2.5 Interrupt Programming Interface...35

3.3 Timer...36

3.3.1 Timer Software Operation...36

3.3.2 Timer Features...36

3.3.3 Timer Source Code Structure...37

3.3.4 Timer Programming Interface..37

3.4 Memory Map..37

3.4.1 Memory Map Hardware Operation..37

3.4.2 Memory Map Software Operation...37

3.4.3 Memory Map Features...37

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 3

Section number Title Page

3.4.4 Memory Map Source Code Structure..38

3.4.5 Memory Map Programming Interface...38

3.5 IOMUX...38

3.5.1 IOMUX Hardware Operation..39

3.5.2 IOMUX Software Operation..39

3.5.3 IOMUX Features..40

3.5.4 IOMUX Source Code Structure...40

3.5.5 IOMUX Programming Interface..40

3.5.6 IOMUX Control Through GPIO Module..40

3.5.6.1 GPIO Hardware Operation...41

3.5.6.1.1 Muxing Control...41

3.5.6.1.2 PULLUP Control..41

3.5.6.2 GPIO Software Operation (general)..41

3.5.6.3 GPIO Implementation..41

3.5.6.4 GPIO Source Code Structure...42

3.5.6.5 GPIO Programming Interface..42

3.6 General Purpose Input/Output(GPIO)..42

3.6.1 GPIO Software Operation..42

3.6.1.1 API for GPIO...43

3.6.2 GPIO Features..43

3.6.3 GPIO Module Source Code Structure..43

3.6.4 GPIO Programming Interface 2...44

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview...45

4.1.1 Hardware Operation...45

4.1.2 Software Operation..45

4.1.3 Source Code Structure...46

4.1.4 Menu Configuration Options...47

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

4 Freescale Semiconductor, Inc.

Section number Title Page

4.1.5 Programming Interface..47

4.1.6 Usage Example..47

Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1 Overview...49

5.1.1 Hardware Operation...49

5.1.2 Software Operation..50

5.1.3 Source Code Structure...50

5.1.4 Menu Configuration Options...51

5.1.5 Programming Interface..51

5.1.6 Usage Example..51

Chapter 6
Image Processing Unit (IPU) Drivers

6.1 Introduction...53

6.2 Hardware Operation..55

6.3 Software Operation...55

6.3.1 Overview of IPU Frame Buffer Drivers..56

6.3.1.1 IPU Frame Buffer Hardware Operation...57

6.3.1.2 IPU Frame Buffer Software Operation..57

6.3.1.3 Synchronous Frame Buffer Driver...58

6.3.2 IPU Backlight Driver...59

6.3.3 IPU Device Driver...59

6.4 Source Code Structure ...60

6.4.1 Menu Configuration Options...61

6.5 Unit Test..64

6.5.1 Framebuffer Tests..65

6.5.2 Video4Linux API test..65

6.5.3 IPU Device Unit test..66

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 5

Section number Title Page

Chapter 7
MIPI DSI Driver

7.1 Introduction...71

7.1.1 Overview of MIPI DSI IP Driver...71

7.1.2 Overview of MIPI DSI Display Panel Driver..72

7.1.3 Hardware Operation...72

7.2 Software Operation...72

7.2.1 MIPI DSI IP Driver Software Operation...72

7.2.2 MIPI DSI Display Panel Driver Software Operation...73

7.3 Driver Features..73

7.3.1 Source Code Structure...74

7.3.2 Menu Configuration Options...74

7.3.3 Programming Interface..74

Chapter 8
Video for Linux Two (V4L2) Driver

8.1 Introduction...75

8.2 V4L2 Capture Device...76

8.2.1 V4L2 Capture IOCTLs..76

8.2.2 Using the V4L2 Capture APIs...78

8.3 V4L2 Output Device...79

8.3.1 V4L2 Output IOCTLs..79

8.3.2 Using the V4L2 Output APIs...80

8.4 Source Code Structure ...80

8.4.1 Menu Configuration Options...81

8.4.2 V4L2 Programming Interface..81

Chapter 9
Electrophoretic Display Controller (EPDC) Frame Buffer Driver

9.1 Introduction...83

9.2 Hardware Operation..84

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

6 Freescale Semiconductor, Inc.

Section number Title Page

9.3 Software Operation...84

9.3.1 EPDC Frame Buffer Driver Overview...84

9.3.2 EPDC Frame Buffer Driver Extensions...85

9.3.3 EPDC Panel Configuration..85

9.3.3.1 Boot Command Line Parameters...86

9.3.4 EPDC Waveform Loading...87

9.3.4.1 Using a Default Waveform File...87

9.3.4.2 Using a Custom Waveform File...88

9.3.5 EPDC Panel Initialization..88

9.3.6 Grayscale Framebuffer Selection...89

9.3.7 Enabling An EPDC Splash Screen...89

9.4 Source Code Structure ...90

9.5 Menu Configuration Options..90

9.6 Programming Interface...91

9.6.1 IOCTLs/Functions...91

9.6.2 Structures and Defines...94

Chapter 10
Pixel Pipeline (PxP) DMA-ENGINE Driver

10.1 Introduction...97

10.2 Hardware Operation..97

10.3 Software Operation...97

10.3.1 Key Data Structs..97

10.3.2 Channel Management..98

10.3.3 Descriptor Management...98

10.3.4 Completion Notification..98

10.3.5 Limitations...99

10.4 Menu Configuration Options..99

10.5 Source Code Structure..99

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 7

Section number Title Page

Chapter 11
Graphics Processing Unit (GPU)

11.1 Introduction...101

11.1.1 Driver Features...101

11.1.1.1 Hardware Operation...101

11.1.1.2 Software Operation..102

11.1.1.3 Source Code Structure ..102

11.1.1.4 Library Structure ...102

11.1.1.5 API References..104

11.1.1.6 Menu Configuration Options...104

Chapter 12
Direct FB

12.1 Introduction...105

12.1.1 Hardware Operation...105

12.2 Software Operation...105

12.2.1 DirectFB Acceleration Architecture..106

12.2.2 i.MX DirectFB Driver Details...107

12.2.3 The gal_config File for i.MX DirectFB Driver..107

12.3 DirectFB EGL...109

12.4 Setting Up DirectFB Acceleration..109

Chapter 13
HDMI Driver

13.1 Introduction...111

13.1.1 Hardware Operation...111

13.2 Software Operation...113

13.2.1 Core..113

13.2.2 Video..114

13.2.3 Display Device Registration and Initialization..115

13.2.4 Hotplug Handling and Video Mode Changes..116

13.2.5 Audio..116

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

8 Freescale Semiconductor, Inc.

Section number Title Page

13.2.6 CEC..118

13.3 Source Code Structure..118

13.3.1 Linux Menu Configuration Options...120

13.4 Unit Test..121

13.4.1 Video..121

13.4.2 Audio..122

13.4.3 CEC..122

Chapter 14
X Windows Acceleration

14.1 Introduction...123

14.2 Hardware Operation..123

14.3 Software Operation...123

14.3.1 X Windows Acceleration Architecture..124

14.3.2 i.MX 6 Driver for X-Windows System..125

14.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System...127

14.3.4 EGL- X Library..128

14.3.5 xorg.conf for i.MX 6..128

14.3.6 Setup X-Windows System Acceleration..130

Chapter 15
Video Processing Unit (VPU) Driver

15.1 Hardware Operation..133

15.1.1 Software Operation..134

15.1.2 Source Code Structure...135

15.1.3 Menu Configuration Options...136

15.1.4 Programming Interface..137

15.1.5 Defining an Application...138

Chapter 16
OmniVision Camera Driver

16.1 OV5640 Using MIPI CSI-2 interface...139

16.1.1 Hardware Operation...139

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 9

Section number Title Page

16.1.2 Software Operation..139

16.1.3 Source Code Structure...140

16.1.4 Linux Menu Configuration Options...140

16.2 OV5640 Using parallel interface..141

16.2.1 Hardware Operation...141

16.2.2 Software Operation..141

16.2.3 Source Code Structure...142

16.2.4 Linux Menu Configuration Options...142

Chapter 17
MIPI CSI2 Driver

17.1 Introduction...143

17.1.1 MIPI CSI2 Driver Overview..143

17.1.2 Hardware Operation...144

17.2 Software Operation...144

17.2.1 MIPI CSI2 Driver Initialize Operation..144

17.2.2 MIPI CSI2 Common API Operation..145

17.3 Driver Features..145

17.3.1 Source Code Structure...146

17.3.2 Menu Configuration Options...146

17.3.3 Programming Interface..146

17.3.4 Interrupt Requirements..147

Chapter 18
Low-level Power Management (PM) Driver

18.1 Hardware Operation..149

18.1.1 Software Operation..149

18.1.2 Source Code Structure...150

18.1.3 Menu Configuration Options...150

18.1.4 Programming Interface..151

18.1.5 Unit Test...151

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

10 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 19
PF100 Regulator Driver

19.1 Introduction...153

19.2 Hardware Operation..153

19.2.1 Driver Features...154

19.3 Software Operation...154

19.3.1 Regulator APIs...154

19.4 Driver Architecture...156

19.4.1 Driver Interface Details..157

19.4.2 Source Code Structure...157

19.4.3 Menu Configuration Options...157

Chapter 20
CPU Frequency Scaling (CPUFREQ) Driver

20.1 Introduction...159

20.1.1 Software Operation..159

20.1.2 Source Code Structure...160

20.2 Menu Configuration Options..160

20.2.1 Board Configuration Options...161

Chapter 21
Dynamic Bus Frequency Driver

21.1 Introduction...163

21.1.1 Operation..163

21.1.2 Software Operation..163

21.1.3 Source Code Structure...164

21.2 Menu Configuration Options..164

21.2.1 Board Configuration Options...164

Chapter 22
Thermal Driver

22.1 Introduction...165

22.1.1 Thermal Driver Overview..165

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 11

Section number Title Page

22.2 Hardware Operation..165

22.2.1 Thermal Driver Software Operation..166

22.3 Driver Features..166

22.3.1 Source Code Structure...166

22.3.2 Menu Configuration Options...166

22.3.3 Programming Interface..166

22.3.4 Interrupt Requirements..167

22.4 Unit Test..167

Chapter 23
Anatop Regulator Driver

23.1 Introduction...169

23.1.1 Hardware Operation...169

23.2 Driver Features..170

23.2.1 Software Operation..170

23.2.2 Regulator APIs...170

23.2.3 Driver Interface Details..171

23.2.4 Source Code Structure...171

23.2.5 Menu Configuration Options...171

Chapter 24
SNVS Real Time Clock (SRTC) Driver

24.1 Introduction...173

24.1.1 Hardware Operation...173

24.2 Software Operation...173

24.2.1 IOCTL..173

24.2.2 Keeping Alive in the Power Off State...174

24.3 Driver Features..174

24.3.1 Source Code Structure...174

24.3.2 Menu Configuration Options...175

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

12 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 25
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

25.1 ALSA Sound Driver Introduction...177

25.2 SoC Sound Card ...180

25.2.1 Stereo CODEC Features..180

25.2.2 7.1 Audio Codec Features..181

25.2.3 AM/FM Codec Features...181

25.2.4 Sound Card Information...181

25.3 Hardware Operation..182

25.3.1 Stereo Audio CODEC..182

25.3.2 7.1 Audio Codec..183

25.3.3 AM/FM Codec...183

25.4 Software Operation...183

25.4.1 ASoC Driver Source Architecture...184

25.4.2 Sound Card Registration..185

25.4.3 Device Open...185

25.4.4 Platform Data...186

25.4.5 Menu Configuration Options...186

25.5 Unit Test..187

25.5.1 Stereo CODEC Unit Test...187

25.5.2 7.1 Audio Codec Unit Test..188

25.5.3 AM/FM Codec Unit Test...189

Chapter 26
Asynchronous Sample Rate Converter (ASRC) Driver

26.1 Introduction...191

26.1.1 Hardware Operation...191

26.2 Software Operation...192

26.2.1 Sequence for Memory to ASRC to Memory...193

26.2.2 Sequence for Memory to ASRC to Peripheral...193

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 13

Section number Title Page

26.3 Source Code Structure..194

26.3.1 Linux Menu Configuration Options...194

26.4 Platform Data..194

26.4.1 Programming Interface (Exported API and IOCTLs)..195

Chapter 27
The Sony/Philips Digital Interface (S/PDIF) Driver

27.1 Introduction...197

27.1.1 S/PDIF Overview...197

27.1.2 Hardware Overview...198

27.1.3 Software Overview..199

27.1.4 ASoC layer...199

27.2 S/PDIF Tx Driver..199

27.2.1 Driver Design...200

27.2.2 Provided User Interface...200

27.3 S/PDIF Rx Driver...201

27.3.1 Driver Design...202

27.3.2 Provided User Interfaces..202

27.4 Source Code Structure ...204

27.5 Menu Configuration Options..205

27.6 Platform Data..205

27.7 Interrupts and Exceptions...206

27.8 Unit Test Preparation..206

27.8.1 Tx test step...206

27.8.2 Rx test step...206

Chapter 28
SPI NOR Flash Memory Technology Device (MTD) Driver

28.1 Introduction...209

28.1.1 Hardware Operation...209

28.1.2 Software Operation..210

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

14 Freescale Semiconductor, Inc.

Section number Title Page

28.1.3 Driver Features...210

28.1.4 Source Code Structure...210

28.1.5 Menu Configuration Options...211

Chapter 29
MMC/SD/SDIO Host Driver

29.1 Introduction...213

29.1.1 Hardware Operation...213

29.1.2 Software Operation..214

29.2 Driver Features..216

29.2.1 Source Code Structure...217

29.2.2 Menu Configuration Options...217

29.2.3 Platform Data...218

29.2.4 Programming Interface..218

29.2.5 Loadable Module Operations...219

Chapter 30
NAND GPMI Flash Driver

30.1 Introduction...221

30.1.1 Hardware Operation...221

30.2 Software Operation...221

30.2.1 Basic Operations: Read/Write..222

30.2.2 Error Correction...222

30.2.3 Boot Control Block Management..222

30.2.4 Bad Block Handling...223

30.3 Source Code Structure..223

30.3.1 Menu Configuration Options...223

Chapter 31
Inter-IC (I2C) Driver

31.1 Introduction...225

31.1.1 I2C Bus Driver Overview..225

31.1.2 I2C Device Driver Overview...226

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 15

Section number Title Page

31.1.3 Hardware Operation...226

31.2 Software Operation...226

31.2.1 I2C Bus Driver Software Operation...226

31.2.2 I2C Device Driver Software Operation...227

31.3 Driver Features..227

31.3.1 Source Code Structure...228

31.3.2 Menu Configuration Options...228

31.3.3 Programming Interface..228

31.3.4 Interrupt Requirements..228

Chapter 32
Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

32.1 Introduction...231

32.1.1 Hardware Operation...231

32.2 Software Operation...232

32.2.1 SPI Sub-System in Linux...232

32.2.2 Software Limitations..233

32.2.3 Standard Operations...233

32.2.4 ECSPI Synchronous Operation..234

32.3 Driver Features..236

32.3.1 Source Code Structure...236

32.3.2 Menu Configuration Options...236

32.3.3 Programming Interface..236

32.3.4 Interrupt Requirements..237

Chapter 33
FlexCAN Driver

33.1 Driver Overview...239

33.1.1 Hardware Operation...239

33.1.2 Software Operation..239

33.1.3 Source Code Structure...239

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

16 Freescale Semiconductor, Inc.

Section number Title Page

33.1.4 Linux Menu Configuration Options...240

Chapter 34
Media Local Bus Driver

34.1 Introduction...241

34.1.1 MLB Device Module...241

34.1.2 Supported Feature..242

34.1.3 Modes of Operation...243

34.1.4 MLB Driver Overview...243

34.2 MLB Driver..243

34.2.1 Supported Features...243

34.2.2 MLB Driver Architecture...243

34.2.3 Software Operation..245

34.3 Driver Files...246

34.4 Menu Configuration Options..246

Chapter 35
ARC USB Driver

35.1 Introduction...247

35.1.1 Architectural Overview..247

35.2 Hardware Operation..248

35.2.1 Software Operation..248

35.2.2 Source Code Structure...249

35.2.3 Menu Configuration Options...250

35.2.4 Programming Interface..253

35.3 System WakeUp..253

35.3.1 USB Wakeup usage...253

35.3.2 How to Enable USB WakeUp System Ability...253

35.3.3 WakeUp Events Supported by USB..254

35.3.4 How to Close the USB Child Device Power..255

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 17

Section number Title Page

Chapter 36
i.MX 6 PCI Express Root Complex Driver

36.1 Introduction...257

36.1.1 PCIe..257

36.1.2 Terminology and Conventions...257

36.1.3 PCIe Topology on i.MX 6 in PCIe RC Mode..259

36.1.4 Features..261

36.2 Linux PCI Subsystem and RC driver..261

36.2.1 RC driver source files..262

36.2.2 Kernel configurations...262

36.3 System Resource: Memory Layout...263

36.3.1 System Resource: Interrupt lines...263

36.4 Using PCIe Endpoint and running Tests...264

36.4.1 Ensuring PCIe System Initialization..265

36.4.2 Tests...265

36.4.3 Known Issues...266

36.5 i.MX 6Quad SD PCIe RC/EP Validation System..266

36.5.1 Hardware Setup..266

36.5.2 Software Configurations..266

36.5.3 Features..267

36.5.4 Results..267

Chapter 37
Fast Ethernet Controller (FEC) Driver

37.1 Introduction...271

37.2 Hardware Operation..271

37.2.1 Software Operation..274

37.2.2 Source Code Structure...274

37.2.3 Menu Configuration Options...274

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

18 Freescale Semiconductor, Inc.

Section number Title Page

37.3 Programming Interface...275

37.3.1 Device-Specific Defines..275

37.3.2 Getting a MAC Address...276

Chapter 38
ENET IEEE-1588 Driver

38.1 Hardware Operation..277

38.1.1 Transmit Timestamping...278

38.1.2 Receive Timestamping...278

38.2 Software Operation...278

38.2.1 Source Code Structure...279

38.2.2 Linux Menu Configuration Options...279

38.3 Programming Interface...279

38.3.1 IXXAT Specific Data structure Defines..279

38.3.2 IXXAT IOCTL Commands Defines..280

Chapter 39
Universal Asynchronous Receiver/Transmitter (UART) Driver

39.1 Introduction...283

39.2 Hardware Operation..284

39.2.1 Software Operation..284

39.2.2 Driver Features...285

39.2.3 Source Code Structure...285

39.3 Configuration..286

39.3.1 Menu Configuration Options...286

39.3.2 Source Code Configuration Options..287

39.3.3 Chip Configuration Options...287

39.3.4 Board Configuration Options...287

39.4 Programming Interface...287

39.4.1 Interrupt Requirements..287

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 19

Section number Title Page

Chapter 40
AR6003 WiFi

40.1 Hardware Operation..289

40.1.1 Software Operation..289

40.1.2 Driver features..289

40.1.3 Source Code Structure...290

40.1.4 Linux Menu Configuration Options...290

Chapter 41
Bluetooth Driver

41.1 Introduction...291

41.1.1 Hardware Operation...291

41.2 Software Operation...293

41.2.1 UART Control..294

41.2.2 Reset and Power control..295

41.2.3 Configuration...295

Chapter 42
Pulse-Width Modulator (PWM) Driver

42.1 Introduction...297

42.1.1 Hardware Operation...297

42.1.2 Clocks...298

42.1.3 Software Operation..299

42.1.4 Driver Features...299

42.1.5 Source Code Structure...299

42.1.6 Menu Configuration Options...300

Chapter 43
Watchdog (WDOG) Driver

43.1 Introduction...301

43.1.1 Hardware Operation...301

43.1.2 Software Operation..301

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

20 Freescale Semiconductor, Inc.

Section number Title Page

43.2 Generic WDOG Driver...302

43.2.1 Driver Features...302

43.2.2 Menu Configuration Options...302

43.2.3 Source Code Structure...302

43.2.4 Programming Interface..303

Chapter 44
OProfile

44.1 Introduction...305

44.1.1 Overview..305

44.1.2 Features..305

44.1.3 Hardware Operation...306

44.2 Software Operation...306

44.2.1 Architecture Specific Components..306

44.2.2 oprofilefs Pseudo Filesystem...307

44.2.3 Generic Kernel Driver..307

44.2.4 OProfile Daemon...307

44.2.5 Post Profiling Tools...308

44.3 Requirements..308

44.3.1 Source Code Structure...308

44.3.2 Menu Configuration Options...308

44.3.3 Programming Interface..309

44.3.4 Interrupt Requirements..309

Chapter 45
CAAM (Cryptographic Acceleration and Assurance Module)

45.1 CAAM Device Driver Overview..311

45.2 Configuration and Job Execution Level...311

45.3 Control/Configuration Driver...312

45.4 Job Ring Driver...312

45.5 API Interface Level...314

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 21

Section number Title Page

45.6 Driver Configuration...316

45.7 Limitations..317

45.8 Limitations in the Existing Implementation Overview...318

45.9 Initialize Keystore Management Interface..318

45.10 Detect Available Secure Memory Storage Units..319

45.11 Establish Keystore in Detected Unit...319

45.12 Release Keystore...320

45.13 Allocate a Slot from the Keystore...320

45.14 Load Data into a Keystore Slot...321

45.15 Demo Image Update...321

45.16 Decapsulate Data in the Keystore...322

45.17 Read Data From a Keystore Slot..323

45.18 Release a Slot back to the Keystore..323

45.19 CAAM/SNVS - Security Violation Handling Interface Overview...325

45.20 Operation...325

45.21 Configuration Interface...326

45.22 Install a Handler..326

45.23 Remove an Installed Driver..326

45.24 Driver Configuration CAAM/SNVS..327

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

22 Freescale Semiconductor, Inc.

Chapter 1
About This Book

1.1 Audience
This document is targeted to individuals who will port the i.MX Linux BSP to customer-
specific products.

The audience is expected to have a working knowledge of the Linux 3.0 kernel internals,
driver models, and i.MX processors.

1.1.1 Conventions

This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

• Italic type indicates replaceable command or function parameters.
• Bold type indicates function names.

1.1.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address
translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARMÂ® Advanced RISC Machines processor architecture

Table continues on the next page...

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 23

Term Definition

AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data

CPU Central Processing Unit-generic term used to describe a processing core

CRC Cyclic Redundancy Check-Bit error protection method for data communication

CSI Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards

FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays

Table continues on the next page...

Audience

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

24 Freescale Semiconductor, Inc.

Term Definition

IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication

ISR Interrupt Service Routine

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices
on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used-a policy for line replacement in the cache

MMU Memory Management Unit-a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG
standards

Several standards of compression for moving pictures and video:

• MPEG-1 is optimized for CD-ROM and is the basis for MP3
• MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
• MPEG-3 was merged into MPEG-2
• MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association-a multi-company organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths

physical
address

The address by which the memory in the system is physically accessed

PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module

ROM Read Only Memory

ROM
bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-Time Integrity Checker-a security hardware module

SCC SeCurity Controller-a security hardware module

Table continues on the next page...

Chapter 1 About This Book

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 25

Term Definition

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

UID Unique ID-a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus-an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

Audience

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

26 Freescale Semiconductor, Inc.

Chapter 2
Introduction

2.1 Overview

The purpose of this software package is to support Linux on the i.MX 6Solo/6DualLite
family of Integrated Circuits (ICs) and their associated platforms. It provides the
necessary software to interface the standard open-source Linux kernel to the i.MX
hardware. The goal is to enable Freescale customers to rapidly build products based on
i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

2.1.1 Software Base

The i.MX BSP is based on version 3.0.35 of the Linux kernel from the official Linux
kernel web site (http://www.kernel.org). It is enhanced with the features provided by
Freescale.

2.1.2 Features

Table below describes the features supported by the Linux BSP for specific platforms.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 27

http://www.kernel.org

Table 2-1. Linux BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine Specific Layer

MSL Machine Specific Layer (MSL) supports interrupts,
Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

• Interrupts GIC: The linux kernel contains common
ARM GIC interrupts handling code.

• Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high resolution
timer features, and so on. Linux defines the MSL
timer API required for the OS-tick timer and does
not expose it beyond the kernel tick
implementation.

• GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board I/O.
The IO software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. I/O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

• SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.

Machine Specific Layer (MSL) All

SDMA API The Smart Direct Memory Access (SDMA) API driver
controls the SDMA hardware. It provides an API to
other drivers for transferring data between MCU, DSP
and peripherals. . The SDMA controller is responsible
for transferring data between the MCU memory space,
peripherals, and the DSP memory space. The SDMA
API allows other drivers to initialize the scripts, pass
parameters and control their execution. SDMA is based
on a microRISC engine that runs channel-specific
scripts.

Smart Direct Memory Access
(SDMA) API

i.MX 6Solo/
6DualLite

DMAC Both AHB-to-APBH and AHB-to-APBX DMA support
configurable DMA descript chain.

AHB-to-APBH Bridge with DMA
(APBH-Bridge-DMA)

i.MX 6Solo/
6DualLite

Low-level PM
Drivers

The low-level power management driver is responsible
for implementing hardware-specific operations to meet
power requirements and also to conserve power on the
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.

Low-level Power Management
(PM) Driver

i.MX 6Solo/
6DualLite

CPU Frequency
Scaling

The CPU frequency scaling device driver allows the
clock speed of the CPUs to be changed on the fly.

CPU Frequency Scaling
(CPUFREQ) Driver

i.MX 6Solo/
6DualLite

Table continues on the next page...

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

28 Freescale Semiconductor, Inc.

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

DVFS The Dynamic Voltage Frequency Scaling (DVFS)
device driver allows simple dynamic voltage frequency
scaling. The frequency of the core clock domain and
the voltage of the core power domain can be changed
on the fly with all modules continuing their normal
operations.

Dynamic Voltage Frequency
Scaling (DVFS) Driver

i.MX 6Solo/
6DualLite

Multimedia Drivers

IPU The Image Processing Unit (IPU) is designed to
support video and graphics processing functions and to
interface with video/still image sensors and displays.
The IPU driver is a self-contained driver module in the
Linux kernel. It contains a custom kernel-level API to
manipulate logical channels. A logical channel
represents a complete IPU processing flow. The IPU
driver includes a frame buffer driver, a V4L2 device
driver, and low-level IPU drivers.

Image Processing Unit (IPU)
Drivers

i.MX 6Solo/
6DualLite

HDMI This driver provides the support HDMI module HDMI Driver i.MX 6Solo/
6DualLite

Dual Display This chapter introduces the basic infromation about
dual display

Dual Display i.MX 6Solo/
6DualLite

V4L2 Output The Video for Linux 2 (V4L2) output driver uses the IPU
post-processing functions for video output. The driver
implements the standard V4L2 API for output devices.

Video for Linux Two (V4L2) Driver i.MX 6Solo/
6DualLite

V4L2 Capture The Video for Linux 2 (V4L2) capture device includes
two interfaces: the capture interface and the overlay
interface. The capture interface records the video
stream. The overlay interface displays the preview
video.

Video for Linux Two (V4L2) Driver i.MX 6Solo/
6DualLite

VPU The Video Processing Unit (VPU) is a multi-standard
video decoder and encoder that can perform decoding
and encoding of various video formats.

Video Processing Unit (VPU)
Driver

i.MX 6Solo/
6DualLite

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions. ALSA has a user-space
component called ALSAlib that can extend the features
of audio hardware by emulating the same in software
(user space), such as resampling, software mixing,
snooping, and so on. The ASoC Sound driver supports
stereo CODEC playback and capture through SSI.

ALSA Sound Driver i.MX 6Solo/
6DualLite

S/PDIF The S/PDIF driver is designed under the Linux ALSA
subsystem. It implements one playback device for Tx
and one capture device for Rx.

The Sony/Philips Digital Interface
(S/PDIF) Driver

i.MX 6Solo/
6DualLite

Memory Drivers

SPI NOR MTD The SPI NOR MTD driver provides the support to the
Atmel data Flash using the SPI interface.

SPI NOR Flash Memory
Technology Device (MTD) Driver

i.MX 6Solo/
6DualLite

Table continues on the next page...

Chapter 2 Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 29

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

NAND MTD The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as UBIFS, CRAMFS and JFFS2UBI and
UBIFSCRAMFS and JFFS2. The driver implementation
supports the lowest level operations on the external
NAND Flash chip, such as block read, block write and
block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND
Flash are not guaranteed to be good, the NAND MTD
driver is also able to detect bad blocks and feed that
information to the upper layer to handle bad block
management.

NAND GPMI Flash Driver i.MX 6Solo/
6DualLite

Input Device Drivers

Networking Drivers

ENET The ENET Driver performs the full set of IEEE 802.3/
Ethernet CSMA/CD media access control and channel
interface functions. The FEC requires an external
interface adaptor and transceiver function to complete
the interface to the Ethernet media. It supports half or
full-duplex operation on 10M\100M related Ethernet
networks.

Fast Ethernet Controller (FEC)
Driver

i.MX 6Solo/
6DualLite

Bus Drivers

I2C The I2C bus driver is a low-level interface that is used
to interface with the I2C bus. This driver is invoked by
the I2C chip driver; it is not exposed to the user space.
The standard Linux kernel contains a core I2C module
that is used by the chip driver to access the bus driver
to transfer data over the I2C bus. This bus driver
supports:

• Compatibility with the I2C bus standard
• Bit rates up to 400 Kbps
• Standard I2C master mode
• Power management features by suspending and

resuming I2C.

Inter-IC (I2C) Driver i.MX 6Solo/
6DualLite

CSPI The low-level Enhanced Configurable Serial Peripheral
Interface (ECSPI) driver interfaces a custom, kernel-
space API to both ECSPI modules. It supports the
following features:

• Interrupt-driven transmit/receive of SPI frames
• Multi-client management
• Priority management between clients
• SPI device configuration per client

Enhanced Configurable Serial
Peripheral Interface (ECSPI) Driver

i.MX 6Solo/
6DualLite

MMC/SD/SDIO -
uSDHC

The MMC/SD/SDIO Host driver implements the
standard Linux driver interface to eSDHC.

MMC/SD/SDIO Host Driver i.MX 6Solo/
6DualLite

UART Drivers

MXC UART The Universal Asynchronous Receiver/Transmitter
(UART) driver interfaces the Linux serial driver API to
all of the UART ports. A kernel configuration parameter

Universal Asynchronous Receiver/
Transmitter (UART) Driver

i.MX 6Solo/
6DualLite

Table continues on the next page...

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

30 Freescale Semiconductor, Inc.

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

gives the user the ability to choose the UART driver
and also to choose whether the UART should be used
as the system console.

General Drivers

USB The USB driver implements a standard Linux driver
interface to the ARC USB-OTG controller.

ARC USB Driver i.MX 6Solo/
6DualLite

FlexCAN The FlexCAN driver is designed as a network device
driver. It provides the interfaces to send and receive
CAN messages. The CAN protocol was primarily
designed to be used as a vehicle serial data bus,
meeting the specific requirements of this field: real-time
processing, reliable operation in the EMI environment
of a vehicle, cost-effectiveness and required bandwidth.

FlexCAN Driver i.MX 6Solo/
6DualLite

ASRC The Asynchronous Sample Rate Converter (ASRC)
driver provides the interfaces to access the
asynchronous sample rate converter module.

Asynchronous Sample Rate
Converter (ASRC) Driver

i.MX 6Solo/
6DualLite

WatchDog The Watchdog Timer module protects against system
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors. This
WDOG implements the following features:

• Generates a reset signal if it is enabled but not
serviced within a predefined time-out value

• Does not generate a reset signal if it is serviced
within a predefined time-out value

Watchdog (WDOG) Driver i.MX 6Solo/
6DualLite

MXC PWM driver The MXC PWM driver provides the interfaces to access
MXC PWM signals

Pulse-Width Modulator (PWM)
Driver

i.MX 6Solo/
6DualLite

Thermal Driver Thermal driver is a necessary driver for monitoring and
protecting the SoC. The thermal driver will monitor the
SoC's temperature in a certain frequency. It defines
three trip points: critical, hot, and active.

Thermal Driver i.MX 6Solo/
6DualLite

OProfile OProfile is a system-wide profiler for Linux systems,
capable of profiling all running code at low overhead.

OProfile i.MX 6Solo/
6DualLite

Chapter 2 Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 31

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

32 Freescale Semiconductor, Inc.

Chapter 3
Machine Specific Layer (MSL)

3.1 Introduction
The Machine Specific Layer (MSL) provides the Linux kernel with the following
machine-dependent components:

• Interrupts including GPIO and EDIO (only on certain platforms)
• Timer
• Memory map
• General Purpose Input/Output (GPIO) including IOMUX on certain platforms
• Shared Peripheral Bus Arbiter (SPBA)
• Smart Direct Memory Access (SDMA)

These modules are normally available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6 for i.MX 6 platform

The header files are implemented under the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operations and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 33

3.2 Interrupts (Operation)
This section explains the hardware and software operation of interrupts on the device.

3.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external
interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
settings.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts for the highest priority level, then highest source number with the same
priority. There are 16 normal interrupt levels for all interrupt sources, with level zero
being the lowest priority. The interrupt levels are configurable through eight normal
interrupt priority level registers. Those registers, along with the Normal Interrupt Mask
Register, support software-controlled priority levels for normal interrupts and priority
masking.

3.2.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different
exception types. The exception vector addresses can be configured to start at low address
(0x0) or high address (0xFFFF0000).

The ARM Linux implementation chooses the high vector address model.

The following file describes the ARM interrupt architecture.

 <ltib_dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

Interrupts (Operation)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

34 Freescale Semiconductor, Inc.

3.2.3 Interrupt Features

The interrupt implementation supports the following features:

• Interrupt Controller interrupt disable and enable
• Functions required by the Linux interrupt architecture as defined in the standard

ARM interrupt source code (mainly the <ltib_dir>/rpm/BUILD/linux/arch/arm/
kernel/irq.c file)

3.2.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file (located in the directory
<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc):

irq.c (If CONFIG_MXC_TZIC is not selected)
tzic.c (If CONFIG_MXC_TZIC is selected)
gic.c (If CONFIG_ARM_GIC is selected)

There are also two header files (located in the include directory specified at the beginning
of this chapter):

hardware.h
irqs.h

The following table lists the source files for interrupts.

Table 3-1. Interrupt Files

File Description

hardware.h Register descriptions

irqs.h Declarations for number of interrupts supported

gic.c Actual interrupt functions for GIC modules

3.2.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

Chapter 3 Machine Specific Layer (MSL)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 35

In addition to the native interrupt lines supported by the Interrupt Controller, the number
of interrupts is also expanded to support GPIO interrupt and (on some platforms) EDIO
interrupts. This allows drivers to use the standard interrupt interface supported by ARM
Linux, such as the request_irq() and free_irq() functions.

3.3 Timer
The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it performs the following operations:

• Updates the system uptime.
• Updates the time of day.
• Reschedules a new process if the current process has exhausted its time slice.
• Runs any dynamic timers that have expired.
• Updates resource usage and processor time statistics.

The timer hardware on most i.MX platforms consists of either Enhanced Periodic
Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is configured to
generate a periodic interrupt at a certain interval (every 10 ms) and is used by the Linux
kernel.

3.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in Timer.
Another function provides the time elapsed as the last timer interrupt.

3.3.2 Timer Features

The timer implementation supports the following features:

• Functions required by Linux to provide the system timer and dynamic timers.
• Generates an interrupt every 10 ms.

Timer

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

36 Freescale Semiconductor, Inc.

3.3.3 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxc/time.c file.

3.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

3.4 Memory Map
A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

3.4.1 Memory Map Hardware Operation

The MMU, as a part of the ARM core, provides the virtual-to-physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

3.4.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX
platforms as defined in the file in <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/
mm.c .

Chapter 3 Machine Specific Layer (MSL)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 37

3.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to create the
physical-to-virtual memory map for all the I/O modules.

3.4.4 Memory Map Source Code Structure

The Memory Map module implementation is in mm.c under the platform-specific MSL
directory. The hardware.h header file is used to provide macros for all the I/O module
physical and virtual base addresses and physical to virtual mapping macros. All of the
memory map source code is in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach

The following table lists the source files for the memory map.

Table 3-2. Memory Map Files

File Description

mx6.h Header files for the I/O module physical addresses

3.4.5 Memory Map Programming Interface

The Memory Map is implemented in the mm.c file to provide the map between physical
and virtual addresses. It defines an initialization function to be called during system
startup.

3.5 IOMUX
The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a

IOMUX

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

38 Freescale Semiconductor, Inc.

specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

• TXD1: internal UART1 Transmit Data. This is the primary function of this pin.
• UART2 DTR: alternate mode 3
• LCDC_CLS: alternate mode 4
• GPIO4[22]: alternate mode 5
• SLCDC_DATA[8]: alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design.

• If the pin is connected to an external UART transceiver and therefore to be used as
the UART data transmit signal, it should be configured as the primary function.

• If the pin is connected to an external Ethernet controller for interrupting the ARM
core, it should be configured as GPIO input pin with interrupt enabled.

The software does not have control over what function a pin should have. The software
only configures pin usage according to the system design.

3.5.1 IOMUX Hardware Operation

The following information applies only to those processors that have an IOMUX
hardware module.

The IOMUX controller registers are briefly described in this section.

For detailed information, see the pin multiplexing section of the IC reference manual.

• SW_MUX_CTL: Selects the primary or alternate function of a pin, and enables
loopback mode when applicable.

• SW_SELECT_INPUT: Controls pin input path. This register is only required when
multiple pads drive the same internal port.

• SW_PAD_CTL: Controls pad slew rate, driver strength, pull-up/down resistance, and
so on.

3.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functions and pad
features.

Chapter 3 Machine Specific Layer (MSL)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 39

3.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

3.5.4 IOMUX Source Code Structure

The following table lists the source files for the IOMUX module. The files are in the
directory:

<ltib_dir>/rpm/BUILD/arch/arm/plat-mxc/

<ltib_dir>/rpm/BUILD/arch/arm/plat-mxc/include/mach

Table 3-3. IOMUX Files

File Description

iomux-v3.c IOMUX function implementation

iomux-mx6dl.h Pin definitions in the iomux_pins enum

3.5.5 IOMUX Programming Interface

All the IOMUX functions required for the Linux port are implemented in the iomux-v3.c
file.

3.5.6 IOMUX Control Through GPIO Module

For a multi-purpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

IOMUX

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

40 Freescale Semiconductor, Inc.

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which can not be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design.

• If this pin is connected to an external UART transceiver, it should be configured as
the primary function.

• If this pin is connected to an external Ethernet controller for interrupting the core, it
should be configured as GPIO input pin with interrupt enabled.

The software does not have control over what function a pin should have. The software
only configures a pin for that usage according to the system design.

3.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, refer to the relevant device documentation.

3.5.6.1.1 Muxing Control

The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPIO port.
These registers may be used for software control of IOMUX block of the GPIO.

3.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

3.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functions and pad
features.

Chapter 3 Machine Specific Layer (MSL)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 41

3.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

3.5.6.4 GPIO Source Code Structure

The GPIO module is implemented in the iomux.cgpio_mux.c file under the relevant MSL
directory. The header file to define the pin names is under:

<ltib_dir>/rpm/BUILD/arch/arm/plat-mxc/include/mach

The following table lists the source files for the IOMUX.

Table 3-4. IOMUX Through GPIO Files

File Description

iomux-mx6dl.h Pin name definitions

3.5.6.5 GPIO Programming Interface

All the GPIO muxing functions required for the Linux port are implemented in the
iomux-v3.c file.

3.6 General Purpose Input/Output(GPIO)
The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

3.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX
processor external pins and a central place to control the GPIO interrupts.

General Purpose Input/Output(GPIO)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

42 Freescale Semiconductor, Inc.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization at the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured to GPIO by the IOMUX, the state of the pin should also be set
because it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-
down, slew rate and so on, with the pad control function may be required as well.

3.6.1.1 API for GPIO

API for GPIO lists the features supported by the GPIO implementation.

The GPIO implementation supports the following features:

• An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

• Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

• Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is
located in the GPIO module.

• Minimal changes required for the public drivers such as Ethernet and UART drivers
as no special GPIO function call is needed for registering an interrupt.

3.6.2 GPIO Features

This GPIO implementation supports the following features:

• Implementing the functions for accessing the GPIO hardware modules
• Provideing a way to control GPIO signal direction and GPIO interrupts

Chapter 3 Machine Specific Layer (MSL)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 43

3.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is at the MSL layer, in the following files, located in
the directories indicated at the beginning of this chapter:

Table 3-5. GPIO Files

File Description

iomux-mx .h IOMUX common header file

gpio.h GPIO public header file

gpio.c Function implementation

3.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio.txt under the Linux source code
directory for the programming interface.

General Purpose Input/Output(GPIO)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

44 Freescale Semiconductor, Inc.

Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space and
the peripherals. It supports the following features:

• Loading channel scripts from the MCU memory space into SDMA internal RAM
• Loading context parameters of the scripts
• Loading buffer descriptor parameters of the scripts
• Controlling execution of the scripts
• Callback mechanism at the end of script execution

4.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals. It has the following features:

• Multi-channel DMA, supporting up to 32 time-division multiplexed DMA channels.
• Powered by a 16-bit Instruction-Set micro-RISC engine.
• Each channel executes specific script.
• Very fast context-switching with two-level priority based preemptive multi-tasking.
• 4-KB ROM containing startup scripts (that is, boot code) and other common utilities

that can be referenced by RAM-located scripts.
• 8-KB RAM area is divided into a processor context area and a code space area used

to store channel scripts that are downloaded from the system memory.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 45

4.1.2 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that it wishes to use, which is called static channel allocation. It can also have the SDMA
driver and provide a free SDMA channel for the driver to use, which is called dynamic
channel allocation. For dynamic channel allocation, the list of SDMA channels is scanned
from channel 32 to channel 1. Upon finding a free channel, that channel is allocated for
the requested DMA transfers.

Table 4-1. SDMA Channel Usage

Driver Name Number of
SDMA Channels

SDMA Channel Used

SDMA CMD 1 Static Channel allocation-uses SDMA channels 0

SSI 2 per device Dynamic channel allocation

UART 2 per device Dynamic channel allocation

SPDIF 2 per device Dynamic channel allocation

ESAI 2 per device Dynamic channel allocation

4.1.3 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory /<ltib_dir>/
rpm/BUILD/linux/include/linux

The following table shows the source files available in the directory /<ltib_dir>/rpm/
BUILD/linux/drivers/dma

Table 4-2. SDMA API Source Files

File Description

dmaengine.c SDMA management routine

imx-sdma.c SDMA implement driver

The following table shows the image files available in the directory /<ltib_dir>/rpm/
BUILD/linux/firmware/imx/sdma

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

46 Freescale Semiconductor, Inc.

Table 4-3. SDMA Script Files

File Description

4.1.4 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this options, use the ./ltib -c command when located in the <ltib dir>. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

• CONFIG_IMX_SDMA_: This is the configuration option for the SDMA API driver.
In menuconfig, this option is available under DMA Engine support.

4.1.5 Programming Interface

The module implements standard DMA API. For more information on the functions
implemented in the driver, refer to the API documents, which are included in the Linux
documentation package. For additional information, refer to the ESAI driver.

4.1.6 Usage Example

Refer to one of the drivers, such as SPDIF driver, UART driver or SSI driver, that uses
the SDMA API driver as a usage example.

Chapter 4 Smart Direct Memory Access (SDMA) API

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 47

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

48 Freescale Semiconductor, Inc.

Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1 Overview
The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK.

(The H in APBH indicates that the APBH is synchronous to HCLK.)

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/O to the APB devices, a central DMA facility for devices on this bus and a vectored
interrupt controller for the ARM core. Each one of the APB peripherals, including the
vectored interrupt controller, is documented in its own chapter in this document.

There is no separated DMA bus for these devices. An internal arbitration logic solves the
conflict that occurs when the DMA uses the APBH bus and the AHB-to-APB bridge
functions use the APBH. For conflict between these two units, the DMA is master and
the AHB is standby, which will report "not ready" through its HREADY output until the
bridge transfer is complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every four rounds of transfer on the APB.

5.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals. It has the following features:

• Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels
• Powered by a 16-bit Instruction-Set micro-RISC engine
• Each channel executes specific script
• Very fast context-switching with preemptive multi-tasking based on two-level

priority

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 49

• 4-KB ROM containing startup scripts (that is, boot code) and other common utilities
that can be referenced by RAM-located scripts

• 8-KB RAM area divided into a processor context area and a code space area used to
store channel scripts that are downloaded from the system memory.

5.1.2 Software Operation

The DMA supports 16 channels of DMA services, as shown in the following table. The
shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up by using the general structure.

Table 5-1. APBH DMA Channel Assignments

APBH DMA Channel # Usage

0 GPMI0

1 GPMI1

2 GPMI2

3 GPMI3

4 GPMI4

5 GPMI5

6 GPMI6

7 GPMI7

8 EMPTY

9 EMPTY

10 EMPTY

11 EMPTY

12 EMPTY

13 EMPTY

14 EMPTY

15 EMPTY

5.1.3 Source Code Structure

The following table shows the source files available in the directory drivers/dma/

Table 5-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

50 Freescale Semiconductor, Inc.

5.1.4 Menu Configuration Options

MXS_DMA is the configuration option for the APBH DMA driver. In menu
configuration, this option is available under Device Drivers > DMA Engine support >
MXS DMA support.

5.1.5 Programming Interface

The module implements standard DMA API. For more information on the functions
implemented in the driver such as GPMI NAND driver, refer to the API documents,
which are located in the Linux documentation package.

5.1.6 Usage Example

Refer to one of the drivers, such as the GPMI NAND driver, that uses the APBH DMA
driver as a usage example.

Chapter 5 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 51

Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

52 Freescale Semiconductor, Inc.

Chapter 6
Image Processing Unit (IPU) Drivers

6.1 Introduction
The image processing unit (IPU) is designed to support video and graphics processing
functions and to connect with video and still image sensors and displays. The IPU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete IPU processing flow. For example,

• A complete IPU processing flow (logical channel) might consist of reading a YUV
buffer from memory, performing post-processing, and writing an RGB buffer to
memory.

• A logical channel maps one to three IDMA channels and maps to either zero or one
IC tasks.

• A logical channel can have one input, one output, and one secondary input IDMA
channel.

The IPU API consists of a set of common functions for all channels. It aims to initialize
channels, set up buffers, enable and disable channels, link channels for auto frame
synchronization, and set up interrupts.

Typical logical channels include:

• CSI direct to memory
• CSI to viewfinder pre-processing to memory
• Memory to viewfinder pre-processing to memory
• Memory to viewfinder rotation to memory
• Previous field channel of memory to video deinterlacing and viewfinder pre-

processing to memory
• Current field channel of memory to video deinterlacing and viewfinder pre-

processing to memory
• Next field channel of memory to video deinterlacing and viewfinder pre-processing

to memory
• CSI to encoder pre-processing to memory

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 53

• Memory to encoder pre-processing to memory
• Memory to encoder rotation to memory
• Memory to post-processing rotation to memory
• Memory to synchronous frame buffer background
• Memory to synchronous frame buffer foreground
• Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the IPU sub-modules are as
follows:

• Synchronous frame buffer functions
• Panel interface initialization
• Set foreground positions
• Set local/global alpha and color key
• Set gamma
• CSI functions
• Sensor interface initialization
• Set sensor clock
• Set capture size

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level API.

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

54 Freescale Semiconductor, Inc.

6.2 Hardware Operation
The detailed hardware operation of the IPU is described in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

Figure 6-1. IPUv3EX/IPUv3H IPU Module Overview

6.3 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.

It consists of a custom kernel-level API for the following blocks:

• Synchronous frame buffer driver
• Display Interface (DI)
• Display Processor (DP)
• Image DMA Controller (IDMAC)
• CMOS Sensor Interface (CSI)
• Image Converter (IC)

The following figure shows the interaction between the different graphics/video drivers
and the IPU.

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 55

Figure 6-2. Graphics/Video Drivers Software Interaction for IPUv3

The IPU drivers are sub-divided as follows:

• Device drivers: include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the IPU processing driver that
provides a system interface to the user space or V4L2 drivers. The frame buffer
device drivers are available in the <ltib_dir>/rpm/BUILD/linux/drivers/video/mxc
directory of the Linux kernel. The V4L2 device drivers are available in the
<ltib_dir>/rpm/BUILD/linux/drivers/media/video directory of the Linux kernel.

• The MXC display driver is a simple framework to manage interaction between the
IPU and display device drivers (such as LCD, LVDS, HDMI, and MIPI).

• Low-level library routines: connect to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the directory of the Linux kernel.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

56 Freescale Semiconductor, Inc.

6.3.1 Overview of IPU Frame Buffer Drivers

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows the application software to access the
graphics hardware through a well-defined interface. Therefore, the software is not
required to know anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Besides the physical memory allocation and LCD panel configuration, the common
kernel video API is used for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

6.3.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the IPU hardware driver module.

6.3.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it, which is the main function. The difference is that the memory that appears in the
special file is not the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see
<ltib_dir>/rpm/BUILD/linux/include/linux/fb.h. The following are some of the IOCTLs
functions:

• Requesting general information about the hardware, such as name, organization of
the screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

• Requesting and changing variable information about the hardware, such as visible
and virtual geometry, depth, color map format, timing. The driver suggests values to

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 57

meet the hardware capabilities (the hardware returns EINVAL if that is not possible)
if this information is changed.

• Getting and setting parts of the color map. Communication is 16 bits-per-pixel
(values for red, green, blue, transparency) to support all existing hardware. The
driver does all the calculations required to apply the options to the hardware (round
to fewer bits, possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver () interacts closely with the generic Linux frame buffer
driver (<ltib_dir>/rpm/BUILD/linux/drivers/video/fbmem.c).

6.3.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer
driver API for synchronous LCD panels or those without memory. The synchronous
frame buffer screen driver is the top-level kernel video driver that interacts with kernel
and user level applications. This is enabled by selecting the Synchronous Panel Frame
buffer option under the graphics support device drivers in the kernel configuration. To
supplement the frame buffer driver, the kernel builder may also include support for fonts
and a startup logo. This depends on the VT console for switching from serial to graphics
mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is used for color setting, palette registration, image blitting and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver by using custom APIs that allow:

• Initialization of panel interface settings
• Initialization of IPU channel settings for LCD refresh
• Changing the frame buffer address for double buffering support

The following features are supported:

• Configurable screen resolution

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

58 Freescale Semiconductor, Inc.

• Configurable RGB 16, 24 or 32 bits per pixel frame buffer
• Configurable panel interface signal timings and polarities
• Palette/color conversion management
• Power management
• LCD power off/on

User applications use the generic video API (the standard Linux frame buffer driver API)
to perform functions with the frame buffer. These include the following:

• Obtaining screen information, such as the resolution or scan length
• Allocating user space memory by using mmap for performing direct blitting

operations

A second frame buffer driver supports a second video/graphics plane.

6.3.2 IPU Backlight Driver

The IPU backlight driver implements IPU PWM backlight control for panels. It exports a
system control file under /sys/class/backlight/pwm-backlight.0/brightness to user space.
The default backlight intensity value is 128.

6.3.3 IPU Device Driver

IPU (processing) device driver provide image processing features, including resizing,
rotation, CSC, combination, and deinterlacing based on IC/IRT modules in IPUv3.

The IPU device driver is task based. Users only need to prepare for task setting, queue
task, and then the block waits for the task to finish. The driver now supports the blocking
method only, and the non-block method will be added in the future. The task structures
are as follows:

struct ipu_task {
 struct ipu_input input;
 struct ipu_output output;

 bool overlay_en;
 struct ipu_overlay overlay;

#define IPU_TASK_PRIORITY_NORMAL 0
#define IPU_TASK_PRIORITY_HIGH 1
 u8 priority;

#define IPU_TASK_ID_ANY 0
#define IPU_TASK_ID_VF 1
#define IPU_TASK_ID_PP 2
#define IPU_TASK_ID_MAX 3
 u8 task_id;

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 59

 int timeout;
};

struct ipu_input {
 u32 width;
 u32 height;
 u32 format;
 struct ipu_crop crop;
 dma_addr_t paddr;

 struct ipu_deinterlace deinterlace;
 dma_addr_t paddr_n; /*valid when deinterlace enable*/
};

struct ipu_overlay {
 u32 width;
 u32 height;
 u32 format;
 struct ipu_crop crop;
 struct ipu_alpha alpha;
 struct ipu_colorkey colorkey;
 dma_addr_t
paddr;

};

struct ipu_output
{

 u32 width;
 u32 height;
 u32 format;
 u8 rotate;
 struct ipu_crop crop;
 dma_addr_t paddr;
};

To prepare for the task, users only need to enter the task.input, task.overlay(if need
combine) and task.output parameters, and then queue task either by int
ipu_queue_task(struct ipu_task *task); if from kernel level(v4l2 driver for example), or by
IPU_QUEUE_TASK ioctl under /dev/mxc_ipu if from application level.

6.4 Source Code Structure
Table 6-1 lists the source files associated with the IPU, Sensor, V4L2, and Panel drivers.
These files are available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3
<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc
<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc
<ltib_dir>/rpm/BUILD/linux/drivers/video/backlight

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

60 Freescale Semiconductor, Inc.

Table 6-1. IPU Driver Files

File Description

ipu_common.c IPU common library functions

ipu_ic.c IPU IC base driver

ipu_device.c IPU driver device interface and fops functions

ipu_capture.c IPU CSI capture base driver

ipu_disp.c IPU display functions

ipu_calc_stripes_sizes.c Multi-stripes method functions for ipu_device.c

mxc_ipuv3_fb.c Driver for synchronous frame buffer

mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD support

mxc_hdmi.c Display Driver for HDMI interface

ldb.c Driver for synchronous frame buffer for on chip LVDS

mxc_dispdrv.c Display Driver framework for synchronous frame buffer

mxc_dvi.c Display Driver for DVI interface

mxc_edid.c Driver for EDID

vdoa.c VDOA post-processing driver, used by ipu_device.c

Table 6-2 lists the global header files associated with the IPU and Panel drivers. These
files are available in the following directories:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/ipu3/
<ltib_dir>/rpm/BUILD/linux/include/linux/
<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/

Table 6-2. IPU Global Header Files

File Description

ipu_param_mem.h Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers

ipu_regs.h IPU register definitions

vdoa.h Header file for VDOA drivers

mxc_dispdrv.h Header file for display driver

mxcfb.h Header file for the synchronous framebuffer driver

ipu.h Header file for ipu basic driver

6.4.1 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module.

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 61

To get to these options, use the command ./ltib -c when located in the <ltib dir>. On the
displayed screen, select Configure the kernel and exit. When the next screen appears,
select the options to configure.

• CONFIG_MXC_IPU: includes support for the Image Processing Unit. In menu
configuration, this option is available under:

Device Drivers > MXC support drivers > Image Processing Unit Driver

By default, this option is Y for all architectures.

If ARCH_MX37 or ARCH_MX5 is true, CONFIG_MXC_IPU_V3 will be set.
Otherwise, CONFIG_MXC_IPU_V1 will be set.

• CONFIG_MXC_CAMERA_OV5640_MIPI: option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the MXC_IPU
option. In menu configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OV 5640 Camera
support using mipi

Only one sensor should be installed at a time.

• CONFIG_MXC_CAMERA_OV5642: option for both the OV5642 sensor driver and
the use case driver. This option is dependent on the MXC_IPU option. In menu
configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642
camera support

Only one sensor should be installed at a time.

• CONFIG_MXC_CAMERA_OV5642: option for both the OV5642 sensor driver and
the use case driver. This option is dependent on the MXC_IPU option. In menu
configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov3640
camera support

Only one sensor should be installed at a time.

• CONFIG_MXC_IPU_PRP_VF_SDC: option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

62 Freescale Semiconductor, Inc.

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menu configuration, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.

• CONFIG_MXC_IPU_PRP_ENC: option for the IPU:

Use case driver for dumb sensors

CSI > IC > MEM MEM > IC (PRP ENC) > MEM

or for smart sensors

CSI > IC(PRP ENC) > MEM.

In menu configuration, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.

• CONFIG_VIDEO_MXC_CAMERA: option for V4L2 capture Driver. This option is
dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menu configuration, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

• CONFIG_VIDEO_MXC_OUTPUT: option for V4L2 output Driver. This option is
dependent on VIDEO_DEV && MXC_IPU option. In menu configuration, this
option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

By default, this option is Y for all.

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 63

• CONFIG_FB: includes frame buffer support in the Linux kernel. In menu
configuration, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices

By default, this option is Y for all architectures.

• CONFIG_FB_MXC: option for the MXC Frame buffer driver. This option is
dependent on the CONFIG_FB option. In menu configuration, this option is
available under:

Device Drivers > Graphics support > MXC Framebuffer support

By default, this option is Y for all architectures.

• CONFIG_FB_MXC_SYNC_PANEL: chooses the synchronous panel framebuffer.
This option is dependent on the CONFIG_FB_MXC option. In menu configuration,
this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

• CONFIG_FB_MXC_LDB: selects the LVDS module on iMX53 chip. This option is
dependent on CONFIG_FB_MXC_SYNC_PANEL and CONFIG_MXC_IPU_V3
option. In menu configuration, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

• CONFIG_FB_MXC_SII9022: selects the SII9022 HDMI chip. This option is
dependent on CONFIG_FB_MXC_SYNC_PANEL option. In menu configuration,
this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image SII9022 DVI/HDMI Interface Chip

6.5 Unit Test
NOTE

In order to execute the tests properly, make sure that you select
the util-linux package and load the following modules:

insmod ipu_prp_enc.ko
insmod ipu_bg_overlay_sdc.ko
insmod ipu_fg_overlay_sdc.ko

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

64 Freescale Semiconductor, Inc.

insmod ipu_csi_enc.ko
insmod ov5642_camera.ko
insmod mxc_v4l2_capture.ko

6.5.1 Framebuffer Tests

There is a test application named mxc_fb_test.c under the <ltib_dir>/rpm/BUILD/imx-
test-"version"/test/mxc_fb_test directory.

Execute the fb test as follows:

./mxc_fb_test.out

The result should be Exiting PASS. The test includes fb0(background) and
fb1(foreground) devices open, framebuffer parameters configure, global alpha blending,
fb pan display test and gamma test.

Redirect an image directly to the framebuffer device as follows:

cat image.bin > /dev/fb0

6.5.2 Video4Linux API test

There are test applications named mxc_v4l2_test.c and mxc_v4l2_output.c under the
<ltib_dir>/rpm/BUILD/imx-test-"version"/test/mxc_v4l2_test directory.

Before running the v4l2 capture test application, make sure that the /dev/v4l/video0 is
created.

Test ID: FSL-UT-V4L2-capture-0010

 # mxc_v4l2_capture.out -iw 640 -ih 480 -m 0 -r 0 -c 50 -fr 30 test.yuv

 Capture the camera and store the 50 frames of YUV420 (VGA size)to a file called
test.yuv and set the frame rate to 30 fps. Look at mxc_v4l2_capture.out -help to see
usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0010

 # mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

 Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of
interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc_v4l2_overlay.out -help to see the usage.

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 65

Test ID: FSL-UT-V4L2-overlay-sdc-0020

 # mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
4 -t 50 -d 0 -fr 30

 Direct preview(90 degree rotation) the camera to SDC background, and set frame rate
to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0010

 # mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
0 -t 50 -d 1 -fg -fr 30

 Direct preview the camera to foreground, and set frame rate to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0020

 # mxc_v4l2_overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
4 -t 50 -d 1 -fg -fr 30

 Direct preview(90 degree rotation) the camera to foreground, and set frame rate to
30
fps.

Test ID: FSL-UT-V4L2-output-0010

 # mxc_v4l2_output.out -iw 640 -ih 480 -ow 1024 -oh 768 -r 0 -fr 60 test.yuv

 Read the YUV420 stream file on test.yuv created by the mxc_v4l2_capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then
display on the framebuffer.

NOTE
The PRP channels require the stride line to be a multiple of 8.
For example, with no rotation, the width needs to be 8 bit
aligned; with 90 degree rotation, the height needs to be 8 bit
aligned. Downsizing cannot exceed 8:1. For example, for a
VGA sensor, the smallest downsize will be 80x60.

6.5.3 IPU Device Unit test

There is a test application named mxc_ipudev_test.c under the <ltib_dir>/rpm/BUILD/
imx-test-"version"/test/mxc_ipudev_test directory.

Before running the ipu device test application, make sure that the /dev/mxc_ipu is
created.

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

66 Freescale Semiconductor, Inc.

Run the test as follows:

 ./mxc_ipudev_test.out -C config_file raw_data_file

 ./mxc_ipudev_test.out -command_line_options raw_data_file

For file configuration instructions, refer to <ltib_dir>/rpm/BUILD/imx-test-"version"/
test/ipudev_config_file.

Below is a simple test source code of IPU device overlay which useS alpha (global/local)
blending to combine two layers:

static unsigned int fmt_to_bpp(unsigned int pixelformat)
{
 unsigned int bpp;

 switch (pixelformat) {
 case IPU_PIX_FMT_RGB565:
 /*interleaved 422*/
 case IPU_PIX_FMT_YUYV:
 case IPU_PIX_FMT_UYVY:
 /*non-interleaved 422*/
 case IPU_PIX_FMT_YUV422P:
 case IPU_PIX_FMT_YVU422P:
 bpp = 16;
 break;
 case IPU_PIX_FMT_BGR24:
 case IPU_PIX_FMT_RGB24:
 case IPU_PIX_FMT_YUV444:
 bpp = 24;
 break;
 case IPU_PIX_FMT_BGR32:
 case IPU_PIX_FMT_BGRA32:
 case IPU_PIX_FMT_RGB32:
 case IPU_PIX_FMT_RGBA32:
 case IPU_PIX_FMT_ABGR32:
 bpp = 32;
 break;
 /*non-interleaved 420*/
 case IPU_PIX_FMT_YUV420P:
 case IPU_PIX_FMT_YVU420P:
 case IPU_PIX_FMT_YUV420P2:
 case IPU_PIX_FMT_NV12:
 bpp = 12;
 break;
 default:
 bpp = 8;
 break;
 }
 return bpp;

}

static void dump_ipu_task(struct ipu_task *t)
{
 printf("====== ipu task ======\n");
 printf("input:\n");
 printf("\twidth: %d\n", t->input.width);
 printf("\theight: %d\n", t->input.height);
 printf("\tcrop.w = %d\n", t->input.crop.w);
 printf("\tcrop.h = %d\n", t->input.crop.h);
 printf("\tcrop.pos.x = %d\n", t->input.crop.pos.x);
 printf("\tcrop.pos.y = %d\n", t->input.crop.pos.y);
 printf("output:\n");
 printf("\twidth: %d\n", t->output.width);

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 67

 printf("\theight: %d\n", t->output.height);
 printf("\tcrop.w = %d\n", t->output.crop.w);
 printf("\tcrop.h = %d\n", t->output.crop.h);
 printf("\tcrop.pos.x = %d\n", t->output.crop.pos.x);
 printf("\tcrop.pos.y = %d\n", t->output.crop.pos.y);

 if (t->overlay_en) {
 printf("overlay:\n");
 printf("\twidth: %d\n", t->overlay.width);
 printf("\theight: %d\n", t->overlay.height);
 printf("\tcrop.w = %d\n", t->overlay.crop.w);
 printf("\tcrop.h = %d\n", t->overlay.crop.h);
 printf("\tcrop.pos.x = %d\n", t->overlay.crop.pos.x);
 printf("\tcrop.pos.y = %d\n", t->overlay.crop.pos.y);
 }

}

int main(int argc, char *argv[])
{
 int fd, fd_fb, isize, ovsize, alpsize, cnt = 50;
 int blank, ret;
 FILE * file_in = NULL;
 struct ipu_task task;
 struct fb_var_screeninfo fb_var;
 struct fb_fix_screeninfo fb_fix;
 void *inbuf, *ovbuf, *alpbuf, *vdibuf;

 fd = open("/dev/mxc_ipu", O_RDWR, 0);
 fd_fb = open("/dev/fb1", O_RDWR, 0);
 file_in = fopen(argv[argc-1], "rb");

 memset(&task, 0, sizeof(task));

 /* input setting */
 task.input.width = 320;
 task.input.height = 240;
 task.input.crop.pos.x = 0;
 task.input.crop.pos.y = 0;
 task.input.crop.w = 0;
 task.input.crop.h = 0;
 task.input.format = IPU_PIX_FMT_YUV420P;

 isize = task.input.paddr =
 task.input.width * task.input.height
 * fmt_to_bpp(task.input.format)/8;
 ioctl(fd, IPU_ALLOC, &task.input.paddr);
 inbuf = mmap(0, isize, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, task.input.paddr);

 /*overlay setting */
 task.overlay_en = 1;
 task.overlay.width = 1024;
 task.overlay.height = 768;
 task.overlay.crop.pos.x = 0;
 task.overlay.crop.pos.y = 0;
 task.overlay.crop.w = 0;
 task.overlay.crop.h = 0;
 task.overlay.format = IPU_PIX_FMT_RGB24;
#ifdef GLOBAL_ALP
 task.overlay.alpha.mode = IPU_ALPHA_MODE_GLOBAL;
 task.overlay.alpha.gvalue = 255;
 task.overlay.colorkey.enable = 1;
 task.overlay.colorkey.value = 0x555555;
#else
 task.overlay.alpha.mode = IPU_ALPHA_MODE_LOCAL;
 alpsize = task.overlay.alpha.loc_alp_paddr =
 task.overlay.width * task.overlay.height;
 ioctl(fd, IPU_ALLOC, &task.overlay.alpha.loc_alp_paddr);
 alpbuf = mmap(0, alpsize, PROT_READ | PROT_WRITE,

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

68 Freescale Semiconductor, Inc.

 MAP_SHARED, fd, task.overlay.alpha.loc_alp_paddr);
 memset(alpbuf, 0x00, alpsize/4);
 memset(alpbuf+alpsize/4, 0x55, alpsize/4);
 memset(alpbuf+alpsize/2, 0x80, alpsize/4);
 memset(alpbuf+alpsize*3/4, 0xff, alpsize/4);
#endif

 ovsize = task.overlay.paddr =
 task.overlay.width * task.overlay.height
 * fmt_to_bpp(task.overlay.format)/8;
 ioctl(fd, IPU_ALLOC, &task.overlay.paddr);
 ovbuf = mmap(0, ovsize, PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, task.overlay.paddr);
#ifdef GLOBAL_ALP
 memset(ovbuf, 0x55, ovsize/4);
 memset(ovbuf+ovsize/4, 0xff, ovsize/4);
 memset(ovbuf+ovsize/2, 0x55, ovsize/4);
 memset(ovbuf+ovsize*3/4, 0x00, ovsize/4);
#else
 memset(ovbuf, 0x55, ovsize);
#endif
#endif

 /* output setting*/
 task.output.width = 1024;
 task.output.height = 768;
 task.output.crop.pos.x = 0;
 task.output.crop.pos.y = 0;
 task.output.crop.w = 0;
 task.output.crop.h = 0;
 task.output.format = IPU_PIX_FMT_RGB565;
 task.output.rotate = IPU_ROTATE_NONE;

 ioctl(fd_fb, FBIOGET_VSCREENINFO, &fb_var);
 fb_var.xres = task.output.width;
 fb_var.xres_virtual = fb_var.xres;
 fb_var.yres = task.output.height;
 fb_var.yres_virtual = fb_var.yres * 3;
 fb_var.activate |= FB_ACTIVATE_FORCE;
 fb_var.nonstd = task.output.format;
 fb_var.bits_per_pixel = fmt_to_bpp(task.output.format);
 ioctl(fd_fb, FBIOPUT_VSCREENINFO, &fb_var);
 ioctl(fd_fb, FBIOGET_VSCREENINFO, &fb_var);
 ioctl(fd_fb, FBIOGET_FSCREENINFO, &fb_fix);
 task.output.paddr = fb_fix.smem_start;
 blank = FB_BLANK_UNBLANK;
 ioctl(fd_fb, FBIOBLANK, blank);

 task.priority = IPU_TASK_PRIORITY_NORMAL;
 task.task_id = IPU_TASK_ID_ANY;
 task.timeout = 1000;

again:
 ret = ioctl(fd, IPU_CHECK_TASK, &task);

 if (ret != IPU_CHECK_OK) {
 if (ret > IPU_CHECK_ERR_MIN) {
 if (ret == IPU_CHECK_ERR_SPLIT_INPUTW_OVER) {
 task.input.crop.w -= 8;
 goto again;
 }
 if (ret == IPU_CHECK_ERR_SPLIT_INPUTH_OVER) {
 task.input.crop.h -= 8;
 goto again;
 }
 if (ret == IPU_CHECK_ERR_SPLIT_OUTPUTW_OVER) {
 task.output.crop.w -= 8;
 goto again;
 }
 if (ret == IPU_CHECK_ERR_SPLIT_OUTPUTH_OVER) {

Chapter 6 Image Processing Unit (IPU) Drivers

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 69

 task.output.crop.h -= 8;
 goto again;
 }
 ret = -1;
 return ret;
 }
 }

 dump_ipu_task(&task);

 while (--cnt > 0) {
 fread(inbuf, 1, isize, file_in);
 ioctl(fd, IPU_QUEUE_TASK, &task);
 }

 munmap(ovbuf, ovsize);

 ioctl(fd, IPU_FREE, task.input.paddr);
 ioctl(fd, IPU_FREE, task.overlay.paddr);

 close(fd);
 close(fd_fb);
 fclose(file_in);
}

NOTE
The overlay width and height must be the same as those of the
output. For example, if the input is 240x320, and the output is
1024x768 which uses rotation of 90 degree, the overlay must be
the same as the output, that is, 1024x768.

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

70 Freescale Semiconductor, Inc.

Chapter 7
MIPI DSI Driver

7.1 Introduction
The MIPI DSI driver for Linux is based on the IPU framebuffer driver.

This driver has two parts:

• MIPI DSI IP driver: low-level interface used to communicate with MIPI device
controller on the display panel.

• MIPI DSI display panel driver: provides an interface to configure the display panel
through MIPI DSI.

7.1.1 Overview of MIPI DSI IP Driver

The MIPI DSI IP driver is registered through the IPU framebuffer driver interface and it
is not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS related
system resources and registers framebuffer event notifier for blank/unblank operation.
Additionally, the driver initializes MIPI D-PHY and configures the MIPI DSI IP
according to the MIPI DSI display panel. The MIPI DSI driver supports the following
features:

• Compatibility with MIPI Alliance Specification for DSI, Version1.01.00.
• Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00.
• Supports up to two D-PHY data lanes.
• Bidirectional Communication and Escape Mode Support through Data Lane 0.
• Programmable display resolutions, from 160x120 (QQVGA) to 1024x768 (XVGA).
• Video Mode Pixel Formats, 16bpp (565RGB),18bpp (666RGB) packed, 18bpp

(666RGB) loosely, 24bpp (888RGB).
• Supports the transmission of all generic commands.
• Supports ECC and checksum capabilities.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 71

• Supports End-of-Transmission Packet(EoTp).
• Supports ultra low power mode.

7.1.2 Overview of MIPI DSI Display Panel Driver

The MIPI DSI display panel driver is used to configure the MIPI DSI display panel.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After being powered on and reset, the MIPI DSI display panel needs to be configured
through standard MIPI DCS command or MIPI DSI Generic command according to
manufacturer's specification.

7.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on exisiting MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from host to peripheral in high speed mode. It also generates an interrupt when an error
occurs.

7.2 Software Operation
The MIPI DSI driver for Linux has two parts: MIPI DSI IP driver and MIPI DSI display
panel driver.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

72 Freescale Semiconductor, Inc.

7.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The IPU instance to
which the MIPI DSI IP is attached is described in the field int ipu_id while the DI
instance inside IPU is described in the field int disp_id

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_lcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter or leave low power
mode.

The MIPI DSI IP driver provides three APIs for MIPI DSI display panel driver to
configure the display module.

7.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through the MIPI
DSI interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to set up display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

7.3 Driver Features
• MIPI DSI communication protocol
• MIPI DSI command mode and video mode
• MIPI DCS command operation

NOTE
The MIPI DSI driver does not support the DBI-2 mode, because
the DBI-2 and DPI-2 cannot be enabled at the same time on this
controller.

Chapter 7 MIPI DSI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 73

7.3.1 Source Code Structure

<ltib_dir>/rpm/BUILD/linux/drivers/video/mxc.

Table 7-1. MIPI DSI Driver Files

File Description

mipi_dsi.c MIPI DSI IP driver source file

mipi_dsi.h MIPI DSI IP driver header file

mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

7.3.2 Menu Configuration Options

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

7.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see <ltib_dir>/rpm/BUILD/linux/driver/video/mxc/mipi_dsi.h.

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

74 Freescale Semiconductor, Inc.

Chapter 8
Video for Linux Two (V4L2) Driver

8.1 Introduction
The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions.

The V4L2 camera driver implements support for all camera related functions. The V4l2
capture device takes incoming video images, either from a camera or a stream, and
manipulates them. The output device takes video and manipulates it, and then sends it to
a display or similar device.

The features supported by the V4L2 driver are as follows:

• Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

• Direct preview to graphics frame buffer (without synchronized to LCD refresh)
• Color keying or alpha blending of frame buffer and overlay planes
• Streaming (queued) capture from IPU encoding channel
• Direct (raw Bayer) still capture (sensor dependent)
• Programmable pixel format, size, frame rate for preview and capture
• Programmable rotation and flipping using custom API
• RGB 16-bit, 24-bit, and 32-bit preview formats
• Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and

4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture
• Control of sensor properties including exposure, white-balance, brightness, and

contrast
• Plug-in of different sensor drivers
• Link post-processing resize and CSC, rotation, and display IPU channels
• Streaming (queued) input buffer
• Double buffering of overlay and intermediate (rotation) buffers
• Configurable 3+ buffering of input buffers
• Programmable input and output pixel format and size

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 75

• Programmable scaling and frame rate
• RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved

input formats
• TV output

The driver implements the standard V4L2 API for capture, output, and overlay devices.
The command modprobe mxc_v4l2_capture must be run before using these functions.

8.2 V4L2 Capture Device
• Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video

stream
• Overlay interface-uses the IPU device driver to display the preview video to the SDC

foreground and background panel.

V4L2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in <ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/.

The V4L2 capture device driver is in the mxc_v4l2_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in <ltib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/capture/

8.2.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

• VIDIOC_QUERYCAP
• VIDIOC_G_FMT
• VIDIOC_S_FMT
• VIDIOC_REQBUFS
• VIDIOC_QUERYBUF
• VIDIOC_QBUF

V4L2 Capture Device

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

76 Freescale Semiconductor, Inc.

• VIDIOC_DQBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF
• VIDIOC_OVERLAY
• VIDIOC_G_FBUF
• VIDIOC_S_FBUF
• VIDIOC_G_CTRL
• VIDIOC_S_CTRL
• VIDIOC_CROPCAP
• VIDIOC_G_CROP
• VIDIOC_S_CROP
• VIDIOC_S_PARM
• VIDIOC_G_PARM
• VIDIOC_ENUMSTD
• VIDIOC_G_STD
• VIDIOC_S_STD
• VIDIOC_ENUMOUTPUT
• VIDIOC_G_OUTPUT
• VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

• 0-Normal operation
• 1-Vertical flip
• 2-Horizontal flip
• 3-180° rotation
• 4-90° rotation clockwise
• 5-90° rotation clockwise and vertical flip
• 6-90° rotation clockwise and horizontal flip
• 7-90° rotation counter-clockwise

The following figure shows a block diagram of V4L2 Capture API interaction.

Chapter 8 Video for Linux Two (V4L2) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 77

Figure 8-1. Video4Linux2 Capture API Interaction

8.2.2 Using the V4L2 Capture APIs

This section describes a sample V4L2 capture process. The application completes the
following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.
2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.
3. Requests a buffer by using IOCTL VIDIOC_REQBUFS. The common V4L2 driver

creates a chain of buffers (currently the maximum number of frames is 3).
4. Memory maps the buffer to its user space.
5. Queues buffers using the IOCTL command VIDIOC_QBUF.
6. Starts the stream by using the IOCTL VIDIOC_STREAMON. This IOCTL enables

the IPU tasks and the IDMA channels. When the processing is completed for a
frame, the driver switches to the buffer that is queued for the next frame. The driver
also signals the semaphore to indicate that a buffer is ready.

7. Takes the buffer from the queue by using the IOCTL VIDIOC_DQBUF. This
IOCTL blocks until it has been signaled by the ISR driver.

V4L2 Capture Device

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

78 Freescale Semiconductor, Inc.

8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF

again.

For the V4L2 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the IOCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

For the V4L2 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

8.3 V4L2 Output Device
The V4L2 output driver uses the IPU post-processing functions for video output.

The driver implements the standard V4L2 API for output devices. V4L2 output device
support can be selected during kernel configuration. The driver is available at <ltib_dir>/
rpm/BUILD/linux/drivers/media/video/mxc/output/mxc_vout.c.

8.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

• VIDIOC_QUERYCAP
• VIDIOC_REQBUFS
• VIDIOC_G_FMT
• VIDIOC_S_FMT
• VIDIOC_QUERYBUF
• VIDIOC_QBUF
• VIDIOC_DQBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF
• VIDIOC_G_CTRL
• VIDIOC_S_CTRL
• VIDIOC_CROPCAP
• VIDIOC_G_CROP

Chapter 8 Video for Linux Two (V4L2) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 79

• VIDIOC_S_CROP
• VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this purpose, the ID is V4L2_CID_MXC_MOTION. Supported values include the
following:

• 0-Medium motion
• 1-Low motion
• 2-High motion

8.3.2 Using the V4L2 Output APIs

This section describes a sample V4L2 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size by using IOCTL VIDIOC_S_FMT.
2. Sets the control information by using IOCTL VIDIOC_S_CTRL, for rotation and de-

interlace motion (if need).
3. Sets the output information by using IOCTL VIDIOC_S_CROP.
4. Requests a buffer by using IOCTL VIDIOC_REQBUFS. The common V4L2 driver

creates a chain of buffers (not allocated yet).
5. Memory maps the buffer to its user space.
6. Executes IOCTL VIDIOC_QUERYBUF to query buffers.
7. Passes the data that requires post-processing to the buffer.
8. Queues the buffer by using the IOCTL command VIDIOC_QBUF.
9. Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

10. Starts the stream by executing IOCTL VIDIOC_STREAMON.
11. Stops the stream by excuting IOCTL VIDIOC_STREAMOFF.

8.4 Source Code Structure
The following table lists the source and header files associated with the V4L2 drivers.

These files are available in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc

Table 8-1. V2L2 Driver Files

File Description

capture/mxc_v4l2_capture.c V4L2 capture device driver

Table continues on the next page...

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

80 Freescale Semiconductor, Inc.

Table 8-1. V2L2 Driver Files (continued)

File Description

output/mxc_vout.c V4L2 output device driver

capture/mxc_v4l2_capture.h Header file for V4L2 capture device driver

capture/ipu_prp_enc.c Pre-processing encoder driver

capture/ipu_prp_vf_adc.c Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c Pre-processing view finder (synchronous background) driver

capture/ipu_fg_overlay_sdc.c synchronous forground driver

capture/ipu_bg_overlay_sdc.c synchronous background driver

capture/ipu_still.c Pre-processing still image capture driver

Drivers for specific cameras can be found in <ltib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/capture/

Drivers for specific output can be found in <ltib_dir>/rpm/BUILD/linux/drivers/media/
video/mxc/output/

8.4.1 Menu Configuration Options

The Linux kernel configuration options are provided in the chapter on the IPU module.

8.4.2 V4L2 Programming Interface

For more information, see the V4L2 Specification and the API Documents for the
programming interface.

The API Specification is available at LINUX MEDIA INFRASTRUCTURE API.

Chapter 8 Video for Linux Two (V4L2) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 81

http://v4l2spec.bytesex.org/spec/

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

82 Freescale Semiconductor, Inc.

Chapter 9
Electrophoretic Display Controller (EPDC) Frame
Buffer Driver

9.1 Introduction
The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device
while also supporting a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

• Support for EPDC driver as a loadable or built-in module.
• Support for RGB565 and Y8 frame buffer formats.
• Support for full and partial EPD screen updates.
• Support for up to 256 panel-specific waveform modes.
• Support for automatic optimal waveform selection for a given update.
• Support for synchronization by waiting for a specific update request to complete.
• Support for screen updates from an alternate (overlay) buffer.
• Support for automated collision handling.
• Support for 64 simultaneous update regions.
• Support for pixel inversion in a Y8 frame buffer format.
• Support for 90, 180, and 270 degree HW-accelerated frame buffer rotation.
• Support for panning (y-direction only).
• Support for automated full and partial screen updates through the Linux

fb_deferred_io mechanism.
• Support for three EPDC driver display update schemes: Snapshot, Queue, and Queue

and Merge.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 83

• Support for setting the ambient temperature through either a one-time designated API
call or on a per-update basis.

• Support for user control of the delay between completing all updates and powering
down the EPDC.

9.2 Hardware Operation
The detailed hardware operation of the EPDC is discussed in the i.MX 6DualLite
Applications Processor Reference Manual.

9.3 Software Operation
The EPDC frame buffer driver is a self-contained driver module in the Linux kernel. It
consists of a standard frame buffer device API coupled with a custom EPD-specific API
extension, accessible through the IOCTL interface. This combined functionality provides
the user with a robust and familiar display interface while offering full control over the
contents and update mode of the E Ink display.

This section covers the software operation of the EPDC driver, both through the standard
frame buffer device architecture, and through the custom E Ink API extensions.
Additionally, panel intialization and framebuffer formats are discussed.

9.3.1 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers. The EPDC driver supports this model
with one key caveat: the contents of the frame buffer are not automatically updated to the
E Ink display. Instead, a custom API function call is required to trigger an update to the E
Ink display. The details of this process are explained in the EPDC Frame Buffer Driver
Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also include support for fonts and a startup logo. The frame buffer device
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
fb0 is generally the primary frame buffer.

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

84 Freescale Semiconductor, Inc.

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/mxc/mxc_epdc_fb.c) interacts closely with
the generic Linux frame buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, please refer to documentation in the
Linux kernel found in Documentation/fb/framebuffer.txt.

9.3.2 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb.h. A full description of these IOCTLs can be found in the Programming Interface
section Programming Interface.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions. These functions are
included in include/linux/mxcfb_epdc_kernel.h, and are documented in the Programming
Interface section Programming Interface.

9.3.3 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, mxc_epdc_fb_mode, which
can be found in arch/arm/plat-mxc/include/mach/epdc.h.

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 85

struct mxc_epdc_fb_mode {
 struct fb_videomode *vmode;
 int vscan_holdoff;
 int sdoed_width;
 int sdoed_delay;
 int sdoez_width;
 int sdoez_delay;
 int gdclk_hp_offs;
 int gdsp_offs;
 int gdoe_offs;
 int gdclk_offs;
 int num_ce;
};

The mxc_epdc_fb_mode structure consists of an fb_videomode structure and a set of
EPD timing parameters. The fb_videomode structure defines the panel resolution and the
basic timing parameters (pixel clock frequency, hsync and vsync margins) and the
additional timing parameters in mxc_epdc_fb_mode define EPD-specific timing
parameters, such as the source and gate driver timings. Please refer to the EPDC
programming model section within the iMX6SLDRM for details on how E Ink panel
timing parameters should be configured.

This EPDC panel mode is part of the mxc_epdc_fb_platform_data structure that is passed
to the EPDC driver during driver registration.

struct mxc_epdc_fb_platform_data {
 struct mxc_epdc_fb_mode *epdc_mode;
 int num_modes;
 void (*get_pins) (void);
 void (*put_pins) (void);
 void (*enable_pins) (void);
 void (*disable_pins) (void);
};

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

9.3.3.1 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is as follows:

epdc video=mxcepdcfb:[panel_name],bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the mxc_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 16 selects RGB565 pixel format, while a setting of 8 selects
8-bit grayscale (Y8) format.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

86 Freescale Semiconductor, Inc.

9.3.4 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP and built into the
kernel.

2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

9.3.4.1 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in firmware/imx/:

• epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.
• epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports

animation mode updates).
• epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.
• epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports

animation mode updates).

The EPDC driver attempts to load a waveform file with the name "imx/
epdc_[panel_name].fw", where panel_name refers to the string specified in the
fb_videomode name field. This panel_name information should be provided to the EPDC
driver through the kernel command line parameters described in the preceding chapter.
For example, to load the epdc_E060SCM.fw default firmware file for a Pearl panel, set
the EPDC kernel command line paratmeter to the following:

video=mxcepdcfb:E060SCM,bpp=16

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 87

9.3.4.2 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP, so please contact Freescale to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name "imx/
epdc_[panel_name].fw", where panel_name refers to the string specified in the
fb_videomode name field. For example, if the panel is named "E60_ABCD", then the
converted waveform file should be named epdc_E60_ABCD.fw.

The firmware script firmware.sh (lib/udev/firmware in the Linux root file system)
contains the search path used to locate the firmware file. The default search path for
firmware files is /lib/firmware;/usr/local/lib/firmware. A custom search path can be
specified by modifying firmware.sh. You’ll need to create an imx directory in one of
these paths and add your new epdc_[panel_name].fw file there.

NOTE
If the EPDC driver is searching for a firmware waveform file
that matches the names of one of the default waveform files
(see preceding chapter), it will choose the default firmware files
that are built into the BSP over any firmware file that has been
added in the firmware search path. Thus, if you leave the BSP
so that it builds those default firmware files into the OS image,
be sure to use a panel name other than those associated with the
default firmware files, since those default waveform files will
be preferred and selected over a new waveform file placed in
the firmware search path.

9.3.5 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E-ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

88 Freescale Semiconductor, Inc.

fb_var_screeninfo parameter set to match the X and Y resolution of a supported E-ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

9.3.6 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the
attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

 fb_screen_info screen_info;
 screen_info.bits_per_pixel = 8;
 screen_info.grayscale = GRAYSCALE_8BIT;
 retval = ioctl(fd_fb0, FBIOPUT_VSCREENINFO, &screen_info);

9.3.7 Enabling An EPDC Splash Screen
#define CONFIG_SPLASH_SCREEN
#define CONFIG_MXC_EPDC

Once this change has been made, rebuild the U-Boot image and flash it to your SD card.
Then perform the following steps to flash a waveform file to an SD card where U-Boot
can find it:

1. Identify the EPDC waveform file from the Linux kernel firmware directory that is
the best match for the panel you are using. For the DC2/DC3 boards, that would be
the waveform file /firmware/imx/epdc_E060SCM.fw.ihex.

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 89

2. Convert the ihex firmware file to a stripped-down binary using the script
ihex2bin.py. Please contact Freescale to acquire this script.

python ihex2bin.py -I epdc_E060SCM.fw.ihex -o epdc_E060SCM_splash.bin

3. Write the firmware file to the SD card at an offset of 6MB where U-Boot will look
for it.

dd if=./epdc_E060SCM_splash.bin of=/dev/sdX bs=1024 seek=6144

9.4 Source Code Structure
Table below lists the source files associated with the EPDC driver. These files are
available in the following directory:

drivers/video/mxc

Table 9-1. EPDC Driver Files

File Description

mxc_epdc_fb.c The EPDC frame buffer driver.

epdc_regs.h Register definitions for the EPDC module.

Table below lists the global header files associated with the EPDC driver. These files are
available in the following directory:

include/linux/

Table 9-2. EPDC Global Header Files

File Description

mxcfb.h Header file for the MXC framebuffer drivers

mxcfb_epdc_kernel.h Header file for direct kernel access to the EPDC API extension

9.5 Menu Configuration Options
To get to the Linux kernel configuration options available for the EPDC module, use the
command ./ltib -c when located in the <ltib dir>. On the screen displayed, select
Configure the kernel and exit. When the next screen appears select the options to
configure. The following Linux kernel configuration options are provided for the EPDC
module:

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

90 Freescale Semiconductor, Inc.

• CONFIG_MXC_EINK_PANEL includes support for the Electrophoretic Display
Controller. In menuconfig, this option is available under:

• Device Drivers > Graphics Support > E-Ink Panel Framebuffer
• CONFIG_MXC_EINK_AUTO_UPDATE_MODE enables support for auto-update

mode, which provides automated EPD updates through the deferred I/O framebuffer
driver. This option is dependent on the MXC_EINK_PANEL option. In menuconfig,
this option is available under:

• Device Drivers > Graphics Support > E-Ink Auto-update Mode Support

NOTE
This option only enables the use of auto-update mode.
Turning on auto-update mode requires an additional
IOCTL call using the
MXCFB_SET_AUTO_UPDATE_MODE IOCTL.

• CONFIG_FB to include frame buffer support in the Linux kernel. In menuconfig,
this option is available under:

• Device Drivers > Graphics support > Support for frame buffer devices
• By default, this option is Y for all architectures.

• CONFIG_FB_MXC is a configuration option for the MXC Frame buffer driver. This
option is dependent on the CONFIG_FB option. In menuconfig, this option is
available under:

• Device Drivers > Graphics support > MXC Framebuffer support
• By default, this option is Y for all architectures.

• CONFIG_MXC_PXP enables support for the PxP. The PxP is required by the EPDC
driver for processing (color space conversion, rotation, auto-waveform selection)
framebuffer update regions. This option must be selected for the EPDC framebuffer
driver to operate correctly. In menuconfig, this option is available under:

• Device Drivers > DMA Engine support > MXC PxP support

9.6 Programming Interface

9.6.1 IOCTLs/Functions

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are, however,
two modes for accessing these functions. For user space access the IOCTL interface
should be used. For kernel space access the functions should be called directly. For each
function below both the IOCTL code and the corresponding kernel function is listed.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 91

Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature

Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.

Parameters:

int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update

Description:

Select between automatic and region update mode.

Parameters:

__u32 mode

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme

Description:

Select a scheme that dictates how the flow of updates within the driver.

Parameters:

__u32 scheme

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

92 Freescale Semiconductor, Inc.

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
aynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps
the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update

Description:

Request a region of the frame buffer be updated to the display.

Parameters:

mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 93

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.

Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay

Description:

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:

int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use
FB_POWERDOWN_DISABLE (defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay

Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

94 Freescale Semiconductor, Inc.

9.6.2 Structures and Defines
#define GRAYSCALE_8BIT 0x1
#define GRAYSCALE_8BIT_INVERTED 0x2

#define AUTO_UPDATE_MODE_REGION_MODE 0

#define AUTO_UPDATE_MODE_AUTOMATIC_MODE 1

#define UPDATE_SCHEME_SNAPSHOT 0
#define UPDATE_SCHEME_QUEUE 1
#define UPDATE_SCHEME_QUEUE_AND_MERGE 2

#define UPDATE_MODE_PARTIAL 0x0
#define UPDATE_MODE_FULL 0x1

#define WAVEFORM_MODE_AUTO 257

#define TEMP_USE_AMBIENT 0x1000

#define EPDC_FLAG_ENABLE_INVERSION 0x01
#define EPDC_FLAG_FORCE_MONOCHROME 0x02
#define EPDC_FLAG_USE_ALT_BUFFER 0x100
#define EPDC_FLAG_TEST_COLLISION 0x200

#define FB_POWERDOWN_DISABLE -1

struct mxcfb_rect {
 __u32 left; /* Starting X coordinate for update region */
 __u32 top; /* Starting Y coordinate for update region */
 __u32 width; /* Width of update region */
 __u32 height; /* Height of update region */
};

struct mxcfb_waveform_modes {
 int mode_init; /* INIT waveform mode */
 int mode_du; /* DU waveform mode */
 int mode_gc4; /* GC4 waveform mode */
 int mode_gc8; /* GC8 waveform mode */
 int mode_gc16; /* GC16 waveform mode */
 int mode_gc32; /* GC32 waveform mode */
};

struct mxcfb_alt_buffer_data {
 __u32 phys_addr; /* physical address of alternate image buffer */
 __u32 width; /* width of entire buffer */
 __u32 height; /* height of entire buffer */
 struct mxcfb_rect alt_update_region; /* region within buffer to update */
};

struct mxcfb_update_data {
 struct mxcfb_rect update_region; /* Rectangular update region bounds */
 __u32 waveform_mode; /* Waveform mode for update */
 __u32 update_mode; /* Update mode selection (partial/full) */
 __u32 update_marker; /* Marker used when waiting for completion */
 int temp; /* Temperature in Celsius */
 uint flags; /* Select options for the current update */
 struct mxcfb_alt_buffer_data alt_buffer_data; /* Alternate buffer data */
};
 struct mxcfb_update_marker_data { __u32 update_marker; __u32 collision_test; };

Chapter 9 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 95

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

96 Freescale Semiconductor, Inc.

Chapter 10
Pixel Pipeline (PxP) DMA-ENGINE Driver

10.1 Introduction
The Pixel Pipeline (PxP) DMA-ENGINE driver provides a unique API, which are
implemented as a dmaengine client that smooths over the details of different hardware
offload engine implementations. Typically, the users of PxP DMA-ENGINE driver
include EPDC driver, V4L2 Output driver, and the PxP user-space library.

10.2 Hardware Operation
The PxP driver uses PxP registers to interact with the hardware. For detailed hardware
operation, please refer to the i.MX 6Solo/6DualLite Multimedia Applications Processor
Reference Manual.

10.3 Software Operation

10.3.1 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework.
There are three important structs in the DMA Engine Framework which are extended by
the PxP driver: struct dma_device, struct dma_chan, struct dma_async_tx_descriptor. The
PxP driver implements several callback functions which are called by the DMA Engine
Framework (or DMA slave) when a DMA slave (client) interacts with the DMA Engine.

The PxP driver implements the following callback functions in struct dma_device:

device_alloc_chan_resources /* allocate resources and descriptors */

device_free_chan_resources /* release DMA channel's resources */

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 97

device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave dma operation */

device_terminate_all /* manipulate all pending operations on a channel, returns zero or
error code */

The first four functions are used by the DMA Engine Framework, the last two are used
by the DMA slave (DMA client). Notably, device_issue_pending is used to trigger the
start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct
dma_async_tx_descriptor, which is used to prepare the descriptor(s) which will be
executed by the engine. When tasks are received in pxp_tx_submit, they are not
configured and executed immediately. Rather, they are added to a task queue and the
function call is allowed to return immediately.

10.3.2 Channel Management

Although ePxP does not have multiple channels in hardware, 16 virtual channels are
supported in the driver; this provides flexibility in the multiple instance/client design. At
any time, a user can call dma_request_channel() to get a free channel, and then configure
this channel with several descriptors (a descriptor is required for each input plane and for
the output plane). When the PxP is no longer being used, the channel should be released
by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

10.3.3 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is
usually associated with several descriptors. Descriptors are recycled resources, under
control of the offload engine driver, to be reused as operations complete. The extended
TX descriptor packet (pxp_tx_desc), allows the user to pass PxP configuration
information to the driver. This includes everything that the PxP needs to execute a
processing task.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

98 Freescale Semiconductor, Inc.

10.3.4 Completion Notification

There are two ways for an application to receive notification that a PxP operation has
completed.

• Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the
completion of the operation.

• Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output
buffer data can be retrieved.

For general information for DMA Engine Framework, please refer to Documentation/
dmaengine.txt in the Linux kernel source tree.

10.3.5 Limitations
• The driver currently does not support scatterlist objects in the way they are

traditionally used. Instead of using the scatterlist parameter object to provide a chain
of memory sources and destinations, the driver currently uses it to provide the input
and output buffers (and overlay buffers, if needed) for one transfer.

• The PxP driver may not properly execute a series of transfers that is queued in rapid
sequence. It is recommended to wait for each transfer to complete before submitting
a new one.

10.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

Device Drivers --->

DMA Engine support --->

[*] MXC PxP support

[*] MXC PxP Client Device

10.5 Source Code Structure
The PxP driver source code is located in drivers/dma/ and include/linux/.

Chapter 10 Pixel Pipeline (PxP) DMA-ENGINE Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 99

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

100 Freescale Semiconductor, Inc.

Chapter 11
Graphics Processing Unit (GPU)

11.1 Introduction
The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is based on the Vivante GC880 core, which is
an embedded engine that accelerates user level graphics Application Programming
Interface (APIs) such as OpenGL ES 1.1, OpenGL ES 2.0. The 2D graphics processing
unit (GPU2D) is based on the Vivante GC320 core, which is an embedded 2D graphics
accelerator targeting graphical user interfaces (GUI) rendering boost.

11.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

• EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.4 API defined by
Khronos Group.

• OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

• OpenGL ES 2.0 API defined by Khronos Group.
• OpenVG (OpenVG is a royalty-free, cross-platform API that provides a low-level

hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

• OpenGL 2.1 API defined by Khronos Group.
• Automatic 3D core slowing down, when hot notification from thermal driver is

active, 3D core will run at 1/64 clock.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 101

11.1.1.1 Hardware Operation

For detailed hardware operation and programming information, see the GPU chapter in
the i.MX 6Solo/6DualLiteApplications Processor Reference Manual.

11.1.1.2 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack . This layer provides the essential hardware
access, device management, memory management, command queue management,
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

• OpenGL ES 1.1 and 2.0 API
• EGL 1.4 API
• OpenVG 1.1 API

11.1.1.3 Source Code Structure

Table below lists GPU driver kernel module source structure:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/gpu-viv

Table 11-1. GPU Driver Files

File Description

Kconfig Kbuild config kernel configure file and makefile

arch/XAQ2/hal/kernel hardware specific driver code for GC880 and GC320

arch/GC350/hal/kernel hardware specific driver code for GC350

hal/kernel Kernel mode HAL driver

hal/os os layer HAL driver

11.1.1.4 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

102 Freescale Semiconductor, Inc.

Table 11-2. GPU Library Files

File Description

libCLC.so OpenCL frontend compiler library

libEGL.so* EGL1.4 library

libGAL.so* GAL user mode driver

libGLES_CL.so OpenGL ES 1.1 common lite library

(without EGL API, no float point support API)

libGL.so.1.2 OpenGL 2.1 common library

libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)

libGLESv1_CL.so OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)

libGLESv1_CM.so OpenGL ES 1.1 common library

(with EGL API, include float point support API)

libGLESv2.so OpenGL ES 2.0 library

libGLSLC.so OpenGL ES shader language compiler library

libOpenCL.so OpenCL 1.1 EP library

libOpenVG.so* OpenVG 1.1 library

libVDK.so VDK wrapper library.

libVIVANTE.so* Vivante user mode driver.

directfb-1.4-0/gfxdrivers/libdirectfb_gal.so DirectFB 2D acceleration library.

dri/vivante_dri.so DRI library for OpenGL2.1.

* These libraries are actually symbolic links to the actual library file in the folder.

By default, these symbolic links are installed to point to the frame buffer version of the
libraries as such:

libGAL.so -> libGAL-fb.so
libEGL.so -> libEGL-fb.so
libVIVANTE.so -> libVIVANTE-fb.so

libOpenVG.so -> libOpenVG_355.so

On X11 systems, the symbolic links to these libraries need to be redirected. This can be
done using the following sequence of commands:

> cd <ROOTFS>/usr/lib
> sudo ln -s libGAL-x11.so libGAL.so
> sudo ln -s libEGL-x11.so libEGL.so
> sudo ln -s libEGL-x11.so libEGL.so.1
> sudo ln -s libVIVANTE-x11.so libVIVANTE.so

On directFB backend, the symbolic links to these libraries need to be redirected. This can
be done using the following sequence of commands:

Chapter 11 Graphics Processing Unit (GPU)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 103

> cd <ROOTFS>/usr/lib
> sudo ln -s libGAL-dfb.so libGAL.so
> sudo ln -s libEGL-dfb.so libEGL.so
> sudo ln -s libEGL-dfb.so libEGL.so.1
> sudo ln -s libVIVANTE-dfb.so libVIVANTE.so

11.1.1.5 API References
• OpenGL ES 1.1 and 2.0 API: http://www.khronos.org/opengles/
• EGL 1.4 API: http://www.khronos.org/egl/
• OpenVG 1.1 API: http://www.khronos.org/openvg/

11.1.1.6 Menu Configuration Options

The following Linux kernel configurations are provided for GPU driver:

CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In menucon
figuration this option is available under Device Drivers > MXC support drivers > MXC
Vivante GPU support > MXC Vivante GPU support.

To get to the GPU library package in LTIB, use the command ./ltib -c when located in the
<ltib dir>. On the displayed screen, select Configure the kernel, select Device Drivers >
MXC support drivers > MXC Vivante GPU support > MXC Vivante GPU support, and
then exit. When the next screen appears, select the following options to enable the GPU
driver:

• Package list > gpu-viv-bin-mx6q
• This package provides proprietary binary libraries, and test code built from the GPU

for framebuffer

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

104 Freescale Semiconductor, Inc.

http://www.khronos.org/opengles/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/

Chapter 12
Direct FB

12.1 Introduction
DirectFB is a thin library that provides hardware graphics acceleration, input device
handling and abstraction, integrated windowing system with support for translucent
windows and multiple display layers, not only on top of the Linux Framebuffer Device. It
is a complete hardware abstraction layer with software fallbacks for every graphics
operation that is not supported by the underlying hardware. DirectFB adds graphical
power to embedded systems and sets a new standard for graphics under Linux.

12.1.1 Hardware Operation

DirectFB acceleration uses the Vivante GPU.

The process is described in the Driver Features. Acceleration is also dependent on the
frame buffer memory.

12.2 Software Operation
The DirectFB version which is currently supported is DirectFB-1.4.0.

Subsequent versions have not been tested and are not officially supported.

Since DirectFB is a thin Graphics library, it is lightweight and has a small footprint
optimized for embedded devices. It is not a client/server model like X11.

It provides a hardware abstraction layer for hardware graphics acceleration: Anything
that is not supported by hardware and still supported by software, but uses hardware
where possible.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 105

12.2.1 DirectFB Acceleration Architecture

Figure 12-1. DirectFB Acceleration Architecture

Figure 12-2. DirectFB Acceleration Architecture Details

Systems provides frame buffer and hardware management to access to the resources.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

106 Freescale Semiconductor, Inc.

12.2.2 i.MX DirectFB Driver Details

The following are the types of operations that are accelerated for DirectFB:

• Rectangle filling/drawing
• Triangle filling/drawing
• Line drawing
• Flat shaded triangles
• Simple blitting
• Stretched blitting
• Textured triangles (perspective correct)
• Blending with an alphachannel (per pixel alpha)
• Blending with an alpha factor (alpha modulation)
• Nine source and destination blend functions
• Porter/Duff rules are supported
• Premultiplied alpha supported
• Colorized blitting (color modulation)
• Source color keying
• Destination color keying

Management

DirectFB has its own resource management for video memory. Resources like display
layers or input devices can be locked for exclusive access, for example, for fullscreen
games. DirectFB provides abstraction for the different graphics targets such as display
layers, windows and any general purpose surfaces. The programming effort for switching
from windowed to fullscreen and back is minimized to set the desired cooperative level.

DirectFB Modules

The API and structure of DirectFB is designed to provide an easy way of implementing
the following parts:

• Graphics acceleration
• Input devices (currently keyboard, serial and PS/2 mice, joysticks)
• Image Provider (currently PNG, GIF and JPEG)
• Video Provider (currently Video4Linux, AVI (using avifile), MPEG1/2 (using

libmpeg3))
• Font Provider (currently DirectFB bitmap font, TrueType via FreeType 2)

Chapter 12 Direct FB

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 107

12.2.3 The gal_config File for i.MX DirectFB Driver

This is the configuration file for Vivante GFX plug-in driver. You can use this file to
control which primitive is accelerated with specific features.

For example, if you want to accelerate blit with alpha blending and rotate180 features,
add the following line to the file.

blit=alphachannel,coloralpha,rotate180

Then blit with other features (including xor and src_colorkey) are not accelerated by HW.
Even blit without any features is not accelerated.

"none" in the feature list means the rendering primitive without any features.

Following is the full matrix of the primitives and features:

drawline=none,xor,blend

drawrectangle=none,xor,blend

fillrectangle=none,xor,blend

filltriangle=none,xor,blend

blit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

stretchblit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

To use the configuration file, set environment variable GAL_CONFIG_FILE pointing to
this file. For example, for a bash user,

export GAL_CONFIG_FILE=/home/gfx/gal_config

If you don't set the environment variable, a default configuration matrix will be used. The
default configuration matrix is as follows:

fillrectangle=none,xor,blend

filltriangle=none,xor,blend

filltriangle=none,xor,blend

blit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

stretchblit=none,xor,alphachannel,coloralpha,src_colorkey,rotate180

Configuration file has higher priority.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

108 Freescale Semiconductor, Inc.

12.3 DirectFB EGL
EGL in DirectFB can be used for OpenGL and OpenVG applications.

To enable DirectFB EGL, you need to increase the size of FBDEV, which can be
achieved by increasing the size in memory of /dev/fb0. This can be done by using fbset.

The typical size to of the fb is the same as the one used for triple buffer:

fbset -fb /dev/fb0 -g Xsize Ysize Xsize 3*Ysize BPP

For the hanstar lvds panel:

fbset -fb /dev/fb0 -g 1024 768 2034 32

For more information on fbset, check the fbset man pages.

12.4 Setting Up DirectFB Acceleration
Perform the following actions to set up DirectFB Acceleration:

1. Install ltib and select "min profile" or "gnome Mobile profile" and build with the
default settings.

2. Cross compile DirectFB and their examples. You can do it by using the toolchain and
follow the instructions in the DirectFB-1.4.0 package or have LTIB to do it all
(recommended). The next steps use LTIB.

3. Because ltib checks the md5sum of the tar.gz, you need to to generate .md5 file for
DirectFB-examples-1.2.0 in the pkgs directory:

• md5sum DirectFB-examples.1.2.0.tgz > DirectFB-examples-1.2.0.tgz.md5

NOTE
You may also need to verify that the .spec file has the
correct version:/ltib/dist/lfs-5.1/DirectFB/DirectFB-
examples.spec

4. Run ltib with command
• ./ltib –m config

5. Make sure that “Configure the kernel” is selected
6. When configuring ltib, go to Package List and select

• gpu-viv-bin-mx6q
DirectFB
DirectFB-examples
zlib

7. Exit and save your configuration.
8. Run ltib

Chapter 12 Direct FB

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 109

• ./ltib

9. Now you should be in the kernel configuration. Go to Device Drivers-> MXC
Support Drivers->MXC Vivante GPU Support and include

• ./MXC Vivante GPU Support

10. Exit, save your configuration and wait for the build.

NOTE
Make sure that you do “insmod /lib/modules/kernel-version/
kernel/drivers/mxc/gpu-viv/galcore.ko” before trying to run
DirectFB applications.

To run the DFB examples, run “/usr/bin/df_dok”. It will perform a series of benchmarks
and show the results, but they require settings such as jpgs, pngs, and fonts, which are in
the DirectFB-examples tar file. Refer to the DirectFB-examples-1.2.0.tar.gz README
for more details.

Setting Up DirectFB Acceleration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

110 Freescale Semiconductor, Inc.

Chapter 13
HDMI Driver

13.1 Introduction
The High Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module, which provides the capability to transfer
uncompressed video, audio, and data by using a single cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multi-function device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

• Integration with the MXC Display Device framework, used for managing display
device connections with the IPU(s)

• HDMI video output up to 1080p60 resolution
• Support for reading EDID information from an HDMI sink device
• Hotplug detection
• Support for CEC
• Automated clock management to minimize power consumption
• Support for system suspend/resume
• HDMI audio playback (2, 4, 6, or 8 channels, 16 bit, for sample rates 32 KHz to 192

KHz)
• IEC audio header information exposed through ALSA by using ‘iecset’ utility

13.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
following figure.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 111

Output data is transmitted through three Transition-Minimized Differential Signaling
(TMDS) channels to an HDMI sink device external to the SoC. Additionally, the HDMI
carries a VESA Data Display Channel (DDC). The DDC is an I2C interface which allows
the HDMI source to query the HDMI sink for Extended Display Identification Data
(EDID). A CEC channel provides optional high-level control functions between the
source and sink device.

Figure 13-1. HDMI HW Integration

For additional details of the hardware operation of the HDMI module, see the HDMI
section of the i.MX 6Solo/6DualLite reference manual.

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

112 Freescale Semiconductor, Inc.

The video input to the HDMI is configurable and may come from either of the two IPU
modules in the i.MX 6Solo/6DualLite, and from either of the two Display Interface (DI)
ports of the IPU, DI0 or DI1. This configuration is controlled through the IOMUX
module by using the HDMI_MUX_CTRL register field. The following figure shows an
illustration of this interconnection.

Figure 13-2. IPU-HDMI Hardware Interconnection

13.2 Software Operation
The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

Chapter 13 HDMI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 113

13.2.1 Core

The HDMI core driver manages resources that must be shared between the HDMI audio
and video drivers. The HDMI audio and video drivers depend on the HDMI core driver,
and the HDMI core driver should always be loaded and initialized before audio and
video. The core driver serves the following functions:

• Mapping the HDMI register region and providing APIs for reading and writing to
HDMI registers.

• Performing one-time initialization of key HDMI registers.
• Initializing the HDMI IRQ and providing shared APIs for enabling and disabling the

IRQ.
• Providing a means for sharing information between the audio and video drivers (such

as the HDMI pixel clock).
• Providing a means for synchronization between HDMI video and HDMI audio while

blank/unbalnk, plug in/plug out events occur. HDMI audio cannot start work while
the HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable is plugged out, the core driver would pause HDMI audio DMA controller if
its PCM is registered. When HDMI is unblanked or the cable is plugged in, the core
driver would firstly check if the cable is in the state of plug in, the video state is
unblank and the PCM is registered. If items listed above are all yes, the core driver
would restart HDMI audio DMA.

13.2.2 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

114 Freescale Semiconductor, Inc.

Figure 13-3. HDMI Video SW Architecture

The i.MX 6Solo/6DualLite supports many different types of display output devices (such
as LVDS, LCD, HDMI, and MIPI displays) connected to and driven by the IPU modules.
The MXC Display Driver API provides a system for registering display devices and
configuring how they should be connected to each of the IPU DIs. The HDMI driver
registers itself as a display device by using this API to receive the correct video input
from the IPU.

13.2.3 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the IPU FB driver through the MXC Display Driver system:

1. During the HDMI video driver initialization, mxc_dispdrv_register() is called to
register the HDMI module as a display device and to set the mxc_hdmi_disp_init()
function as the display device init callback.

Chapter 13 HDMI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 115

2. When the IPU FB driver is initialized, mxc_dispdrv_init() is called. This results in an
initialization call to all registered display devices.

3. The mxc_hdmi_disp_init() callback is executed. The HDMI driver receives a structure
from the IPU FB driver containing frame buffer information (fbi). The HDMI driver
also provides return information about which IPU and DI to select and the preferred
output format for video data from the IPU. The HDMI driver registers itself to
receive notifications of FB driver events. Finally, the HDMI driver can complete its
initialization by configuring the HDMI to receive a hotplug interrupt.

NOTE
All display device drivers must be initialized before the IPU FB
driver for all display devices to be registered as MXC Display
Driver devices before the IPU FB driver can initialize them.

13.2.4 Hotplug Handling and Video Mode Changes

Once the connection between the IPU and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt,
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and IPU FB are conducted through
the Linux Frame Buffer APIs. The following list demonstrates the software flow to
recognize an HDMI sink device and configure the IPU FB driver to drive video output to
it:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device, constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls fb_set_var() to change the video mode in the IPU FB
driver. The IPU FB driver completes its reconfiguration for the new mode.

3. As a result of calling fb_set_var(), an FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode..

4. The HDMI module is enabled to generate output to the HDMI sink device.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

116 Freescale Semiconductor, Inc.

13.2.5 Audio

The HDMI Tx audio driver uses the ALSA SoC framework, so it is broken into several
files, as is listed in Table 13-4. Most of the code is in the platform DMA driver (sound/
soc/imx/imx-hdmi-dma.c) and the codec driver (sound/soc/codecs/mxc_hdmi.c). The
machine driver (sound/soc/imx/imx-hdmi.c) exists to allocate the SoC audio device and
link all the SoC components together. The DAI driver (sound/soc/imx/imx-hdmi-dai.c)
mostly exists because SoC wants there to be a DAI driver; it gets the platform data, but
doesn’t do anything else.

The HDMI codec driver does most of the initialization of the HDMI audio sampler. The
HDMI Tx block only implements the AHB DMA audio and not the other audio interfaces
(SSI, S/PDIF, etc). The other main function of the HDMI codec driver is to set up a struct
of the IEC header information which needs to go into the audio stream. This struct is
hooked into the ALSA layer, so the IEC settings will be accessible in userspace using the
‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block’s DMA engine. Note that HDMI
audio uses the HDMI block’s DMA as well as SDMA. SDMA is used to help implement
the multi-buffer mechanism. The HDMI Tx block does not automatically merge the IEC
audio header information into the audio stream, so the platform DMA driver does this in
its hdmi_dma_copy() (for no memory map use) or hdmi_dma_mmap_copy() (for
memory map mode use) function before the DMA sends the buffers out. Due to IEC
audio header adding operation,the user space application may not be able to get enough
CPU periods to feed data into HDMI audio driver in time, especially when system
loading is high. In this case, some spark noise would be heard. In different audio
framework (ALSA LIB, or PULSE AUDIO), different log about this noise may be
printed. For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are
printed.

HDMI audio playback depends on HDMI pixel clock. So while in the state of HDMI
blank and cable plug out, HDMI audio would be stopped or can't be played. See detailed
infomation in software_operation_core.

Because HDMI audio driver needs to add an IEC header, the driver needs to know the
quantity of data that the application writes into HDMI audio driver. If the application is
not able to tell the data quantity (for example, DMIX plugin in ALSA LIB), the HDMI
audio driver is not able to work properly. There would be no sound heard.

The HDMI audio supports the following features:

• Playback sample rate
• 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
• capability of HDMI sink

• Playback Channels:

Chapter 13 HDMI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 117

• 2, 4, 6, 8
• capability of HDMI sink

• Playback audio formats:
• SNDRV_PCM_FMTBIT_S16_LE

13.2.6 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products. The HDMI CEC driver implements software part of HDMI
CEC low-Level protocol. It includes getting Logical address, CEC message sending and
receiving, error handle, and message re-transmitting.

Figure 13-4. HDMI CEC SW Architecture

13.3 Source Code Structure
The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

118 Freescale Semiconductor, Inc.

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers/mfd/ directory.

Table 13-1. HDMI Core Driver File List

File Description

mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the <ltib_dir>/rpm/BUIL D/
linux/include/linux/mfd/ directory.

Table 13-2. HDMI Core Display Driver Public Header File List

File Description

mxc-hdmi-core.h HDMI core driver header file

The source code for the HDMI display driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers/video/ directory.

Table 13-3. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers and sound/soc/ directory. Although the HDMI is one hardware block, the
audio driver is divided into four c files corresponding to the ALSA SoC layers:

Table 13-4. HDMI Audio Driver File List

File Description

codecs/mxc_hdmi.c HDMI Audio SoC codec driver implemention

imx/imx-hdmi-dai.c HDMI Audio SoC DAI driver implemention

imx/imx-hdmi-dma.c HDMI Audio SoC platform DMA driver implemention

imx/imx-hdmi.c HDMI Audio SoC machine driver implemention

The source code for the HDMI CEC driver is available in the <ltib_dir>/rpm/BUIL D/
linux/drivers/mxc/ directory.

Chapter 13 HDMI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 119

Table 13-5. HDMI CEC Driver File List

File Description

drivers/mxc/hdmi-cec.c HDMI CEC driver implemention

The source code for the HDMI lib is available in the <ltib_dir>/rpm/BUIL D/imx-lib/
hdmi-cec/ directory.

Table 13-6. HDMI CEC lib File List

File Description

hdmi-cec/mxc_hdmi-cec.c HDMI CEC lib implemention

hdmi-cec/hdmi-cec.h HDMI CEC lib header file

hdmi-cec/android.mk HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the <ltib_dir>/rpm/BUILD/
linux/arch/arm/plat-mxc/ directory.

Table 13-7. HDMI Platform File List

File Description

devices/platform-mxc-hdmi-core.c HDMI core driver platform device code

devices/platform-mxc_hdmi.c HDMI display driver platform device code

devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code

devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code

include/mach/mxc_hdmi.h HDMI register defines

13.3.1 Linux Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menu configuration at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

120 Freescale Semiconductor, Inc.

The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menu configuration at the following
location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

When either of the previous two configuration options is selected, the MXC HDMI Core
configuration option, CONFIG_MFD_MXC_HDMI will be selected. This option can
also be found in the menu configuration here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menu configuration at the following menu location:

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

13.4 Unit Test
The HDMI video and audio drivers each have their own set of tests.

The HDMI video driver does not lend itself well to automated testing, so a number of
manual tests are required to verify the correct functionality. For audio driver testing, the
aplay audio file player and iecset utility provide confirmation of the the driver's proper
integration into the ALSA framework. The following two section describe unit testing for
both the HDMI audio and video drivers.

13.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1. Linux kernel command line-based tests: The initial mode used to display HDMI
video can be specified through the Linux kernel command line boot parameters. Try
several different valid display resolutions through the kernel parameters, re-booting
the system each time and verifying that the desired resolution is displayed on the
connected HDMI display.

2. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the i.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate

Chapter 13 HDMI Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 121

video mode, based on the modes read via EDID from the HDMI sink, and display
that mode on the sink device.

3. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

13.4.2 Audio

The following sequence of tests can verify the correct operation of the HDMI audio
driver:

1. Ensure that an HDMI cable is connected between the i.MX board and the HDMI sink
device, and that the HDMI video image is being properly displayed on the device.

2. Use 'aplay -l' (that's a single dash and a lower-case L) to list the audio playback cards
and determine the card number. This is different on our various boards.

3. For example, if the hdmi ends up being card 2, use this command line to play out a
pcm audio file "file.wav":

$ aplay -Dplughw:2,0 file.wav

4. Use 'iecset' to list out the IEC information about the device. You will need to specify
card number like:

$ iecset -c2

NOTE
HDMI audio is dependent on a reasonable pixel clock rate
being established. If this is not the case, error messages
indicating “pixel clock not supported” will appear. This is
because there is no clock regenerator cts value that could be
calculated for the current pixel clock.

13.4.3 CEC

The following test can be used to simple verify HDMI CEC function:

$ /unit_test/mxc_cec_test

Bootup device and connect HDMI sink to board, and then run the above command. The
HDMI CEC will send Poweroff command to HDMI sink.

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

122 Freescale Semiconductor, Inc.

Chapter 14
X Windows Acceleration

14.1 Introduction
X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows System can run with a default frame buffer driver which handles all drawing
operations to the main display. Because there is a 2D GPU (graphics processing unit)
available, some drawing operations can be accelerated. High level X operations may get
decomposed into many low-level drawing operations where these low level operations
are accelerated for X-Windows System.

14.2 Hardware Operation
X-Windows System acceleration on i.MX 6 uses the Vivante GC320 2D GPU.

Acceleration is also dependent on the frame buffer memory.

14.3 Software Operation
X-Windows acceleration is supported by X.org X Server version 1.7.6 and later versions,
as well as the EXA interface version 2.5.

The types of operations that are accelerated for X11 are as follows. All operations
involve frame buffer memory which may be on screen or off screen:

• Solid fill of a rectangle.
• Upload image from the system memory to the video memory.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 123

• Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.

• Copy of a rectangle supporting most XRender compositing operations with these
options:

• Pixel format conversion.
• Repeating pattern source.
• Porter-Duff blending of source with target.
• Source alpha masking.

The following are additional features supported by the X-Windows acceleration:

• X pixmaps can be allocated directly in frame buffer memory.
• EGL swap buffers where the EGL window surface is an X-window.
• X-window can be composited into an X pixmap which can be used directly as any

EGL surface.

14.3.1 X Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

Figure 14-1. X Driver Architecture

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

124 Freescale Semiconductor, Inc.

The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some of the families in the
i.MX 6 series, such as the i.MX 6SoloLite, do not contain 3D HW module. The
components shown in light gray are the standard components in the X-Windows System
without acceleration. The components shown in orange are those added to support X-
Windows System acceleration and are briefly described here.

The i.MX X Driver library module (vivante-drv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for i.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /dev/fb0 is used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (libGAL.so) contains the register-level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the i.MX X Driver code.

The EGL-X library module (libEGL.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the i.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

14.3.2 i.MX 6 Driver for X-Windows System

The i.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The implementation details are as follows:

• The implementation builds upon the source from the fbdev frame buffer driver for X,
so that it can be the fallback when the acceleration is disabled.

• The implementation is based on X server EXA version 2.5.0.
• The EXA solid fill operation is accelerated, except for source/target drawables

containing less than 1024x1024 pixels, in which case software failure may occur.
• The EXA copy operation is accelerated, except for source/target drawables

containing less than 1024x1024 pixels, in which case software failure may occur.
• EXA putimage (upload into video memory) is accelerated, except for source

drawables containing less than 400x400 pixels, in which case software failure may
occur.

Chapter 14 X Windows Acceleration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 125

• For EXA solid fill, only solid plane masks and only GXcopy raster-op operations are
accelerated.

• For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, GXnand) are not accelerated.

• EXA composite allows for many options and combinations of source/mask/target for
rendering. Commonly used EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

• Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

• Simple source composite operations are used when source/target drawables contain
more than 1024x1024 pixels (operations with mask not supported).

• Constant source (with or without alpha mask) composite with target.
• Repeating pattern source (with or without alpha mask) composite with target.
• Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-

REVERSE, and ADD (some of these need to support the accelerated component-
alpha blending).

• In general, the following types of less commonly used EXA composite operations are
not accelerated:

• Transformed (meaning scaled, rotated) sources and masks.
• Gradient sources.
• Alpha masks with repeating patterns.

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt may fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel, which are being requested
for the pixmap, are less than 8. If the attempt to allocate from the GPU accessible
memory fails, the memory is allocated from the system. If the pixmap memory is
allocated from the system, this pixmap cannot be involved in GPU accelerated option.
The number of pitch bytes used to access the pixmap memory may be different
depending on whether it was allocated from GPU accessible memory or from the system.

Once the memory for X pixmap has been allocated, no matter it is from GPU accessible
memory or from the system, the pixmap is locked and can never migrate to other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation. More memory, however, becomes available
(through de-allocation) at a later time.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

126 Freescale Semiconductor, Inc.

The GPU accessible memory pitch (horizontal) alignment for the GC320 is 8 pixels.
Because the memory can be allocated from GPU accessible memory, these pixels could
be used in EGL for OpenGL/ES drawing operations.

All of the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension.

X extension is provided, so that X clients can query the physical GPU address associated
with an X pixmap if that X pixmap was allocated in the GPU accessible memory.

14.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-
Windows System

The Direct Rendering Infrastructure, also known as the DRI, is a framework that allows
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important function for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

• The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APIs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

• The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

• The libdri.so implements Vivante’s customized DRI protocol that passes the buffer
information between X server and X clients (GL or GLES applications).

Chapter 14 X Windows Acceleration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 127

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

1. GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

2. In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

3. Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

14.3.4 EGL- X Library

The EGL-X library implements the low-level EGL interface used in X-Windows System.

The implementation details are as follows:

• The eglDisplay native display type is "Display*" in X-Windows.
• The eglWindowSurface native window surface type is "Window" in X-Windows.
• The eglPixmapSurface native pixmap surface type is "Pixmap" in X-Windows.

When an eglWindowSurface is created, the back buffers, used for double-buffering, can have
different representations from the window surface (based on the selected eglConfig). An
attempt is made to create each back buffer by using the representation, which provides
the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the i.MX X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

14.3.5 xorg.conf for i.MX 6

The /etc/X11/xorg.conf file must be properly configured to use the i.MX 6 X Driver.

This configuration appears in a Device section of the file which contains both mandatory
and optional entries. The following example shows a preferred configuration for using
the i.MX 6 X Driver:

Section "Device"
 Identifier "i.MX Accelerated Framebuffer Device"
 Driver "vivante"
 Option "fbdev" "/dev/fb0"
 Option "vivante_fbdev" "/dev/fb0"

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

128 Freescale Semiconductor, Inc.

 Option "HWcursor" "false"
EndSection

Section "Monitor"
 Identifier "Configured Monitor"
EndSection

Section "Screen"
 Identifier "Default Screen"
 Monitor "Configured Monitor"
 Device "i.MX Accelerated Framebuffer Device"
EndSection

Section "ServerLayout"
 Identifier "Default Layout"
 Screen "Default Screen"
EndSection

Some important entries recognized by the i.MX X Driver are described as follows:

• Device Identifier and Screen Device String

The mandatory Identifierentry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
 Identifier "i.MX Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screen section of the xorg.conf file. For
example,

Section "Screen"
 ...
 Device "i.MX Accelerated Framebuffer Device"
 ...
EndSection

• Device Driver String

The mandatory Driver entry specifies the name of the loadable i.MX X driver.

Section "Device"
 ...
 Driver "vivante"
 ...
EndSection

• Device fbdevPath Strings

Chapter 14 X Windows Acceleration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 129

The mandatory entries fbdev and vivante_devspecifies the path for the frame buffer
device to use.

Section "Device"
 ...
 Option "fbdev" "/dev/fb0"
 Option "vivante_fbdev" "/dev/fb0"
 ...
EndSection

14.3.6 Setup X-Windows System Acceleration

Setup of X-Windows system acceleration consists of package installation and
verification, file verification, and verifying acceleration. The debian packages are only
available for ubuntu root fs. There's no gpu driver for X11 on gnome mobile root fs or
LTIB

• Package installation and verification:
• Verify that the following packages are available and installed:

gpu-viv-bin-mx6q_<bsp-version>_armel.deb

• This package contains gpu driver develop headers, and is installed in the /usr/
include folder

• This package contains gpu driver hal librarylibGAL.so
• This package contains 3D client libraries, include libEGL.so, libGLESv1_.so,

libGLESv2.so, libGL.so, vivante_dri.so ... library
• All above libraries are installed in the /usr/lib folder except vivante_dri.so,

which is installed at /usr/lib/dri
• xserver-xorg-video-imx-viv_<bsp-version>_armel.deb

• This package contains the vivante-drv.so and libdri.so driver module for X
acceleration and is installed in the folder with all the other X.org driver modules

• File verification:
• Verify that the device file /dev/galcore is present.
• Verify that the file /etc/X11/xorg.conf contains the correct entries as described in

the previous section.
• Verify acceleration:

• Assuming the above steps have been performed, do the following to verify that
X Window System acceleration is indeed operating.

• Examine the log file /var/log/Xorg.0.log and confirm that the following lines
present:

[33.767] (II) LoadModule: "vivante"
[33.782] (II) Loading /usr/lib/xorg/modules/drivers/vivante_drv.so
...

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

130 Freescale Semiconductor, Inc.

[33.881] (II) VIVANTE(0): using default device
[33.881] (WW) VGA arbiter: cannot open kernel arbiter, no multi-card support
[33.881] (II) VIVANTE(0): Creating default Display subsection in Screen section
 "Default Screen" for depth/fbbpp 16/16
[33.881] (==) VIVANTE(0): Depth 16, (==) framebuffer bpp 16
[33.881] (==) VIVANTE(0): RGB weight 565
[33.881] (==) VIVANTE(0): Default visual is TrueColor
[33.881] (==) VIVANTE(0): Using gamma correction (1.0, 1.0, 1.0)
[33.881] (II) VIVANTE(0): hardware: mxc_elcdif_fb (video memory: 2250kB)
[33.882] (II) VIVANTE(0): checking modes against framebuffer device...
[33.882] (II) VIVANTE(0): checking modes against monitor...
[33.882] (--) VIVANTE(0): Virtual size is 800x480 (pitch 800)
[33.882] (**) VIVANTE(0): Built-in mode "current": 33.5 MHz, 31.2 kHz, 58.6 Hz
[33.882] (II) VIVANTE(0): Modeline "current"x0.0 33.50 800 964 974 1073 480
490 500 533 -hsync -vsync -csync (31.2 kHz)
[33.882] (==) VIVANTE(0): DPI set to (96, 96)
...
[34.228] (II) VIVANTE(0): FB Start = 0x333a8000 FB Base = 0x333a8000 FB
Offset = (nil)
[34.228] (II) VIVANTE(0): test Initializing EXA
[34.228] (II) EXA(0): Driver allocated offscreen pixmaps
[34.229] (II) EXA(0): Driver registered support for the following operations:
[34.229] (II) Solid
[34.229] (II) Copy
[34.229] (II) Composite (RENDER acceleration)
[34.229] (II) UploadToScreen
[34.244] (==) VIVANTE(0): Backing store disabled
[34.244] (==) VIVANTE(0): DPMS enabled

• Note:
• Although there's some error info for AIGLX, it could be ignored. AIGLX is for

glx non-DRI implementation, while our glx library will never call AIGLX
module at X server, since our glx is a library for DRI.

[7.205] (EE) AIGLX error: vivante exports no extensions (/usr/lib/arm-linux-
gnueabihf/dri/vivante_dri.so: undefined symbol: __driDriverExtensions)
[7.214] (EE) AIGLX: reverting to software rendering
[7.278] (II) AIGLX: Loaded and initialized swrast
[7.278] (II) GLX: Initialized DRISWRAST GL provider for screen 0

Chapter 14 X Windows Acceleration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 131

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

132 Freescale Semiconductor, Inc.

Chapter 15
Video Processing Unit (VPU) Driver

15.1 Hardware Operation
The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex
and efficient multimedia codec system.

The VPU hardware data flow is shown in the MPEG4 decoder example in the following
figure.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 133

Figure 15-1. VPU Hardware Data Flow

15.1.1 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

134 Freescale Semiconductor, Inc.

for the application layer in user-space as a path to access system resources. The
application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

• Module initialization which initializes the module with the device specific structure
• Device initialization which initializes the VPU clock and hardware and request the

IRQ
• Interrupt servicing routine which supports events that one frame has been finished
• File operation routine which provides the following interfaces to user space:

• File open
• File release
• File synchronization
• File IOCTL to provide interface for memory allocating and releasing

• Memory map for register and memory accessing in user space
• Device Shutdown: shuts down the VPU clock and hardware, and releases the IRQ

The VPU user space driver has the following functions:

• Codec lib
• Downloads executable bitcode for hardware
• Initializes codec system
• Sets codec system configuration
• Controls codec system by command
• Reports codec status and result
• System I/O operation
• Requests and frees memory
• Maps and unmaps memory/register to user space
• Device management

15.1.2 Source Code Structure

The following table lists the kernel space source files available in the following
directories:

 <ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/

 <ltib_dir>/rpm/BUILD/linux/drivers/mxc/vpu/

Chapter 15 Video Processing Unit (VPU) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 135

Table 15-1. VPU Driver Files

File Description

mxc_vpu.h Header file defining IOCTLs and memory structures

mxc_vpu.c Device management and file operation interface implementation

The following table lists the user-space library source files available in the <ltib_dir>/
rpm/BUILD/imx-lib-11.11.00/vpu directory:

Table 15-2. VPU Library Files

File Description

vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory

vpu_io.h Header file for IOCTLs

vpu_lib.c Core codec implementation in user space

vpu_lib.h Header file of the codec

vpu_reg.h Register definition of VPU

vpu_util.c File implementing common utilities used by the codec

vpu_util.h Header file

The following table lists the firmware files available in the following directories:

 <ltib_dir>/rpm/BUILD/firmware-imx-11.11.00/lib/firmware/vpu/ directory

Table 15-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

NOTE
To get the to files in Table 2, run the command: ./ltib -m prep -
p imx-lib in the console

15.1.3 Menu Configuration Options

To get to the VPU driver, use the command ./ltib -c when located in the <ltib dir>. On the
displayed screen, select Configure the kernel and exit. When the next screen appears,
select the following options to enable the VPU driver:

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

136 Freescale Semiconductor, Inc.

• CONFIG_MXC_VPU, provided for the VPU driver. In menu configuration, this
option is available under

• Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit)
support

15.1.4 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

The codec library APIs are listed below:

RetCode vpu_Init(void *);
void vpu_UnInit(void);
RetCode vpu_GetVersionInfo(vpu_versioninfo * verinfo);

RetCode vpu_EncOpen(EncHandle* pHandle, EncOpenParam* pop);
RetCode vpu_EncClose(EncHandle encHandle);
RetCode vpu_EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);
RetCode vpu_EncRegisterFrameBuffer(EncHandle handle, FrameBuffer * bufArray,
 int num, int frameBufStride, int
sourceBufStride,
 PhysicalAddress subSampBaseA,
PhysicalAddress subSampBaseB,
 ExtBufCfg *scratchBuf);
RetCode vpu_EncGetBitstreamBuffer(EncHandle handle, PhysicalAddress* prdPrt,
 PhysicalAddress* pwrPtr, Uint32*
size);
RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);
RetCode vpu_EncStartOneFrame(EncHandle encHandle, EncParam* pParam);
RetCode vpu_EncGetOutputInfo(EncHandle encHandle, EncOutputInfo* info);
RetCode vpu_EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam);
RetCode vpu_DecOpen(DecHandle* pHandle, DecOpenParam* pop);
RetCode vpu_DecClose(DecHandle decHandle);
RetCode vpu_DecGetBitstreamBuffer(DecHandle pHandle, PhysicalAddress* pRdptr,
 PhysicalAddress* pWrptr, Uint32* size);
RetCode vpu_DecUpdateBitstreamBuffer(DecHandle decHandle, Uint32 size);
RetCode vpu_DecSetEscSeqInit(DecHandle pHandle, int escape);
RetCode vpu_DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);
RetCode vpu_DecRegisterFrameBuffer(DecHandle decHandle, FrameBuffer* pBuffer, int num,
 int stride, DecBufInfo* pBufInfo);
RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam* param);
RetCode vpu_DecGetOutputInfo(DecHandle decHandle, DecOutputInfo* info);
RetCode vpu_DecBitBufferFlush(DecHandle handle);
RetCode vpu_DecClrDispFlag(DecHandle handle, int index);
RetCode vpu_DecGiveCommand(DecHandle pHandle, CodecCommand cmd, void* pParam);
int vpu_IsBusy(void);
int vpu_WaitForInt(int timeout_in_ms);
RetCode vpu_SWReset(DecHandle handle, int index);

System I/O operations are listed below:

int IOGetPhyMem(vpu_mem_desc* buff);
int IOFreePhyMem(vpu_mem_desc* buff);
int IOGetVirtMem (vpu_mem_desc* buff);
int IOFreeVirtMem(vpu_mem_desc* buff);

Chapter 15 Video Processing Unit (VPU) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 137

15.1.5 Defining an Application

The most important definition for an application is the codec memory descriptor. It is
used for request, free, mmap and munmap memory as follows:

typedef struct vpu_mem_desc
{
 int size; /*request memory size*/
 unsigned long phy_addr; /*physical memory get from system*/
 unsigned long cpu_addr; /*address for system usage while freeing,
user doesn't need
 to handle or use it*/
 unsigned long virt_uaddr; /*virtual user space address*/
} vpu_mem_desc;

For how to use API in the application, refer to i.MX 6Solo/6DualLite VPU Application
Programming Interface Linux Reference Manual.

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

138 Freescale Semiconductor, Inc.

Chapter 16
OmniVision Camera Driver

16.1 OV5640 Using MIPI CSI-2 interface
This is an introduction to the OV5640 camera driver that uses the MIPI CSI-2 interface.

16.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low-power consumption.
The camera driver is located under the Linux V4L2 architecture and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client. V4L2 driver uses I2C bus to control camera
operation.

OV5640 supports two transfer modes: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to i.MX AP chip through the MIPI CSI-2
interface. MIPI receives the sensor data and transfers them to IPU CSI.

Refer to OV5640 datasheet to get more information on the sensor.

Refer to the i.MX 6 Multimedia Applications Processor Reference Manual for more
information on MIPI CSI-2 and IPU CSI.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 139

16.1.2 Software Operation

The camera driver implements the V4L2 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

• Capture stream mode

The supported picture formats are:

• YUV422P
• UYVY
• YUV420

The supported picture sizes are:
• QVGA
• VGA
• 720P
• 1080P

16.1.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

 <ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

Table 16-1. Camera Driver Files

File Description

ov5640_mipi.c Camera driver implementation for ov5640 using MIPI CSI-2 interface

16.1.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./ltib -c command when located in the <ltib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following option to enable this module:

• Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640
camera support using mipi.

OV5640 Using MIPI CSI-2 interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

140 Freescale Semiconductor, Inc.

16.2 OV5640 Using parallel interface
This is an introduction to the OV5640 camera driver that uses the parallel interface.

16.2.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low-power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client. V4L2 driver uses I2C bus to control camera
operation.

OV5640 supports only parallel interface.

Refer to OV5640 datasheet to get more information on the sensor.

Refer to the i.MX 6 Multimedia Applications Processor Reference Manual for more
information on CSI.

16.2.2 Software Operation

The camera driver implements the V4L2 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

• Capture stream mode
• Capture still mode

The supported picture formats are:

• UYVY
• YUYV

The supported picture sizes are:
• QVGA

Chapter 16 OmniVision Camera Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 141

• VGA
• 720P
• 1080P
• QSXGA

16.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

 <ltib_dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

Table 16-2. Camera Driver Files

File Description

ov5640.c Camera driver implementation for ov5640 using parallel interface

16.2.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./ltib -c command when located in the <ltib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following option to enable this module:

• Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640
camera support.

OV5640 Using parallel interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

142 Freescale Semiconductor, Inc.

Chapter 17
MIPI CSI2 Driver

17.1 Introduction
MIPI CSI-2 for i.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2 compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and allows it to co-work with
MIPI sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

• MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
• MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-

PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU id, CSI id, etc.) from the MIPI CSI2 driver.

17.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the mipi sensor driver and IPU CSI module. It is not
exposed to the user space.

MIPI CSI2 driver supports the following features:

• Supporting 1-4 lanes
• Supporting IPU(0,1) and CSI(0,1).

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 143

• Supporting 0-3 virtual channels.
• Supporting the following date types:

• RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
• YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
• RAW data: RAW6, RAW7, RAW8, RAW10, RAW12, RAW14

17.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

• PHY Adaptation Layer is responsible for managing the D-PHY interface, including
PHY error handling.

• Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection.

• Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame level
and line level.

• Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events.

17.2 Software Operation
MIPI CSI2 driver for Linux has two parts:

• MIPI CSI2 driver: initializes the mipi_csi2_info structure
• MIPI CSI2 common APIs: exports APIs for the CSI module driver and mipi sensor

driver

17.2.1 MIPI CSI2 Driver Initialize Operation

The steps for MIPI CSI2 driver initialization are as follows:

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

144 Freescale Semiconductor, Inc.

1. MIPI CSI2 driver initializes the mipi_csi2_info structure, some key information
about mipi sensor, such as connected IPU ID, CSI ID, virtual channel and date type.

2. The driver initilizes the D-PHY clock and pixel clock. The pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI.

3. The driver waits for sensor connection.

17.2.2 MIPI CSI2 Common API Operation

MIPI CSI2 driver exports a large number of APIs to manage MIPI D-PHY.

The following is the introduction to all APIs:

• mipi_csi2_get_info: get the mipi_csi_info
• mipi_csi2_enable: enable mipi csi2 interface
• mipi_csi2_disable: disable mipi csi2 interface
• mipi_csi2_get_status: get mipi csi2 interface disable/enable status
• mipi_csi2_get_bind_ipu: get the ipu id which mipi csi2 will connect
• mipi_csi2_get_bind_csi: get the csi id which mipi csi2 will connect
• mipi_csi2_get_virtual_channel: get the virtual channel number by which mipi sensor

will tansfer data to MIPI D-PHY
• mipi_csi2_set_lanes: set the lanes number by which mipi sensor will tansfer data to

MIPI D-PHY
• mipi_csi2_set datatype: set the mipi sensor data type
• mipi_csi2_get_datatype: get the mipi sensor data type; This function will be called

by csi module to set csi register
• mipi_csi2_dphy_status: get the MIPI D-PHY status
• mipi_csi2_get_error1: get the mipi error1 register information
• mipi_csi2_get_error2: get the mipi error2 register informaiton
• mipi_csi2_pixelclk_enable: enable the pixel clock
• mipi_csi2_pixelclk_disable: disable the pixel clock
• mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

17.3 Driver Features
• Supporting 1-4 lanes
• Supporting IPU(0,1) and CSI(0,1)
• Supporting 0-3 virtual channels
• Supporting the following date types:

• RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444

Chapter 17 MIPI CSI2 Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 145

• YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
• RAW data: RAW6, RAW7, RAW8, RAW10, RAW12, RAW14

17.3.1 Source Code Structure

Table below shows the MIPI CSI2 driver source files available in the directory.

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/mipi.

Table 17-1. MIPI CSI2 Driver Files

File Description

mxc_mipi_csi2.c mipi csi2 driver source file

17.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module.

To get to this option, use the ./ltib -c command when located in the <ltib dir>. On the
displayed screen, select Configure the Kernel and exit. When the next screen appears,
select the following options to enable this module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

17.3.3 Programming Interface

MIPI CSI2 Common APIs can only be called by the MIPI sensor driver and IPU CSI
module driver.

Before calling the API, in system initialization stage, use the mipi_csi2_platform_data
structure and imx6q_add_mipi_csi2 funciton to add a MIPI CSI2 driver.

For the MIPI sensor driver, the initialization steps are as follows:
• Get MIPI information by calling mipi_csi2_get_info().
• Enable the MIPI CSI2 interface by calling mipi_csi2_enable().
• Set the lanes by calling mipi_csi2_set_lanes().
• Reset the MIPI D-PHY by calling mipi_csi2_reset().
• Configure the MIPI sensor.

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

146 Freescale Semiconductor, Inc.

• Wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_error1().

• When uninstalling the sensor driver, disable the MIPI CSI2 interface by calling
mipi_csi2_disable().

For sample code that explains how the MIPI sensor uses MIPI APIs, refer to the
OV5640_mipi driver source code.

For the IPU CSI module driver, the call steps are as follows:

• Get the MIPI information by calling mipi_csi2_get_info().
• Get the IPU ID and CSI ID to assure configuration of the correct CSI module by

calling mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi().
• Get the data type and virtual channel from MIPI CSI2 driver and configure the CSI

module by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel().
• Perform other configuration operations for the CSI module and enable CSI.
• Enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling

mipi_csi2_pixelclk_enable().
• When all tasks are done, disable the CSI module first,and then disable the MIPI pixel

clock by calling mipi_csi2_pixelclk_disable().

For sample code that explains how CSI module driver uses MIPI APIs, refer to the IPU
CSI module driver source code.

17.3.4 Interrupt Requirements

No interrupt is needed for the MIPI CSI2 driver.

Chapter 17 MIPI CSI2 Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 147

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

148 Freescale Semiconductor, Inc.

Chapter 18
Low-level Power Management (PM) Driver

18.1 Hardware Operation
This section describes the low-level Power Management (PM) driver which controls the
low-power modes.

The i.MX 6 supports four low-power modes: RUN, WAIT, STOP, and DORMANT.

Table below lists the detailed clock information for different low-power modes.

Table 18-1. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL

RUN Active Active, Idle or Disable On On On

WAIT Disable Active, Idle or Disable On On On

STOP Disable Disable Off Off On

DORMANT Power off Disable Off Off On

For the detailed information about lower power modes, see the MCIMX 6DualLite
Multimedia Applications Processor Reference Manual (MCIMX6DLRM).

18.1.1 Software Operation

The i.MX 6 PM driver maps the low-power modes to the kernel power management
states as follows:

• Standby: maps to STOP mode that offers significant power saving, as all blocks in
the system are put into a low-power state, except for ARM core that is still powered
on, and memory is placed in self-refresh mode to retain its contents.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 149

• Mem (suspend to RAM): maps to DORMANT mode that offers most significant
power saving as all blocks in the system are put into a low-power state, except for
memory that is placed in self-refresh mode to retain its contents.

• System idle: maps to WAIT mode.

The i.MX 6 PM driver performs the following steps to enter and exit low-power mode:

1. Allow the Coretex-A9 platform to issue a deep-sleep mode request.
2. If it is in STOP or DORMANT mode:

• Program CCM CLPCR register to set low-power control register.
• If it is in DORMANT mode, request switching off CPU power when pdn_req is

asserted.
• Request switching off embedded memory peripheral power when pdn_req is

asserted.
• Program GPC mask register to unmask wakeup interrupts.

3. Call cpu_do_idle to execute WFI pending instructions for wait mode.
4. Execute mx6_do_suspend in IRAM.
5. If it is in DORMANT mode, save the ARM context, change the drive strength of

MMDC PADs to "low" to minimize the power leakage in DDR PADs. Execute WFI
pending instructions for stop mode.

6. Generate a wakeup interrupt and exit low-power mode. If it is in DORMANT mode,
restore the ARM core and DDR drive strength.

In DORMANT and STOP mode, the i.MX 6 can assert the VSTBY signal to the PMIC
and request a voltage change. The Machine Specific Layer (MSL) usually sets the
standby voltage in STOP mode according to i.MX 6 data sheet.

18.1.2 Source Code Structure

Table below shows the PM driver source files. These files are available in <ltib_dir>/
rpm/BUILD/linux/arch/arm/mach-mx6/.

Table 18-2. PM Driver Files

File Description

pm.c Supports suspend operation

system.c Supports low-power modes

mx6_suspend.S Assembly file for CPU suspend

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

150 Freescale Semiconductor, Inc.

18.1.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the ./ltib -c command when located in the <ltib dir>. On the displayed
screen, select Configure the Kernel and exit. When the next screen appears, select the
following options to enable this module:

• CONFIG_PM builds support for power management. In menu configuration, this
option is available under:

• Power management options > Power Management support
• By default, this option is Y.

• CONFIG_SUSPEND builds support for suspend. In menu configuration, this option
is available under:

• Power management options > Suspend to RAM and standby

18.1.4 Programming Interface

The mxc_cpu_lp_set API in the system.c function is provided for low-power modes. This
implements all the steps required to put the system into WAIT and STOP modes.

18.1.5 Unit Test

To enter different system-level low-power modes:

echo mem > /sys/power/state
echo standby > /sys/power/state

To wake up system from low-power modes:

enable wake up source first, USB device, debug uart or RTC etc.
can be used as wakeup source, below is the example of uart wakeup and rtc wakeup:
echo enabled > /sys/devices/platform/imx-uart.'x'/tty/ttymxc'x'/power/wakeup; Here 'x' is
your debug uart's index;
echo +x > /sys/class/rtc/rtc0/wakealarm; RTC will wake up system after x seconds.

To test this mode automatically, refer to the script in /unit_tests/suspend_auto.sh

Chapter 18 Low-level Power Management (PM) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 151

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

152 Freescale Semiconductor, Inc.

Chapter 19
PF100 Regulator Driver

19.1 Introduction
PF100 is a PMIC chip that is implemented on the i.MX 6 series development platforms.

The PF100 regulator driver provides the low-level control of the power supply regulators,
selection of voltage levels, and enabling/disabling of regulators. This device driver makes
use of the PF100 core driver to access the PF100 hardware control registers. The PF100
core driver is based on the MFD structure and it is attached to the kernel I2C bus.

19.2 Hardware Operation
PF100 provides reference and supply voltages for the application processor and
peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and other circuitry.

Linear regulators are directly supplied from the battery or from the switchers, including
supplies for I/O and peripherals, audio, camera, BT, and WLAN. Naming conventions
are suggestive of typical or possible use case applications, but the switchers and
regulators may be used for other system power requirements within the guidelines of
specified capabilities.

The only power on event of PF100 is that PWRON is high, and the only power off event
of PF100 is that PWRON is low. PMIC_ON_REQ pin of i.MX 6, which is controlled by
SNVS block of i.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off,
so that system can power off.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 153

19.2.1 Driver Features

The PF100 regulator driver is based on PF100 core driver and regulator core driver. It
provides the following services for regulator control of the PMIC component:

• Switch ON/OFF all voltage regulators.
• Set the value for all voltage regulators.
• Get the current value for all voltage regulators.
• Write/Read PF100 registers by sysfs interface.

19.3 Software Operation
PF100 regulator client driver performs operations by reconfiguring the PMIC hardware
control registers.

This is done by calling PF100 core driver APIs with the required register settings.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

19.3.1 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output is
controllable) and current sinks (where current output is controllable).

For more details, visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

• regulator_get is an unified API call to lookup and obtain a reference to a regulator:

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

154 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

struct regulator *regulator_get(struct device *dev, const char *id);

• regulator_put is an unified API call to free the regulator source:

void regulator_put(struct regulator *regulator, struct device *dev);

• regulator_enable is an unified API call to enable regulator output:

int regulator_enable(struct regulator *regulator);

• regulator_disable is an unified API call to disable regulator output:

int regulator_disable(struct regulator *regulator);

• regulator_is_enabled is the regulator output enabled:

int regulator_is_enabled(struct regulator *regulator);

• regulator_set_voltage is an unified API call to set regulator output voltage:

int regulator_set_voltage(struct regulator *regulator, int uV);

• regulator_get_voltage is an unified API call to get regulator output voltage:

int regulator_get_voltage(struct regulator *regulator);

You can find more APIs and details in the regulator core source code inside the Linux
kernel at: <ltib_dir>/rpm/BUILD/linux/drivers/regulator/core.c.

Chapter 19 PF100 Regulator Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 155

19.4 Driver Architecture
Figure below shows the basic architecture of the PF100 regulator driver.

Regulator core driver

PF100 regulator driver

PF100 core driver(MFD)

 I2C or SPI driver

Device drivers

PF100 driver

Figure 19-1. PF100 Regulator Driver Architecture

Driver Architecture

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

156 Freescale Semiconductor, Inc.

19.4.1 Driver Interface Details

Access to PF100 regulator is provided through the API of the regulator core driver.

The PF100 regulator driver provides the following regulator controls:

• Four buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SW1C, SW2, SW3A, SW3B, and SW4.

• Buck switch can be programmed to a state of standby with specific register
(PF100_SWxSTANDBY) in advance.

• Six Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGEN5, and VGEN6.
• One LDO/Switch supply for VSNVS support on i.MX processors.
• One Low current, high accuracy, voltage reference for DDR Memory reference

voltage.
• One Boost regulator with USB OTG support.
• Most power rails from PF100 have been programmed properly according to the

hardware design. Therefore, you cannot find the kernel by using PF100 regulators.
The PF100 regulator driver has implemented these regulators so that customers can
use it freely if default PF100 value can't meet their hardware design.

19.4.2 Source Code Structure

The PF100 regulator driver is located in the regulator device driver directory:

<ltib_dir>/rpm/BUILD/linux/drivers/regulator

Table 19-1. PF100 core Driver Files

File Description

drivers/mfd/pf100-
core.c

Linux kernel interface for regulators.

drivers/regulator/
pf100-regulator.c

Implementation of the PF100 regulator client driver.

19.4.3 Menu Configuration Options

The following are menu configuration options:

1. When located in the <ltib dir>, to get to the PMIC power configuration, use the
command:

./ltib -c

Chapter 19 PF100 Regulator Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 157

2. On the configuration screen select Configure Kernel, and then exit. When the next
screen appears, choose the following:

Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF100 PMIC.

Driver Architecture

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

158 Freescale Semiconductor, Inc.

Chapter 20
CPU Frequency Scaling (CPUFREQ) Driver

20.1 Introduction
The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage VDDCORE,
VDDSOC and VDDPU are changed to the voltage value defined in cpu_op-mx6.c . This
method can reduce power consumption (thus saving battery power), because the CPU
uses less power as the clock speed is reduced.

20.1.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in cpu_op-mx6.c, the CPUFREQ driver changes the CPU
frequency to the nearest higher frequency in the array. The frequencies are manipulated
using the clock framework API, while the voltage is set using the regulators API. The
CPU frequencies in the array are based on the boot CPU frequency which can be changed
by using the clock command in U-Boot. Interactive CPU frequency governor is used and
it cannot be changed manually. To change CPU frequency manually, you can use the
userspace CPU frequency governor.

Refer to the API document for more information on the functions implemented in the
driver.

To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values), use this command:

 cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz), use this command:

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 159

 echo 792000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked by using this command:

 cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Use the following command to view the current CPU frequency in KHz:

 cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

Use the following command to view available governors:

 cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

Use the following command to change to interactive CPU frequency governor:

 echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

20.1.2 Source Code Structure

Table below shows the source files and headers available in the following directory.

 <ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/

Table 20-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

For CPU frequency working point settings, see arch/arm/mach-mx6/cpu_op-mx6.c.

20.2 Menu Configuration Options
The following Linux kernel configuration is provided for this module:

CONFIG_CPU_FREQ: In menu configuration, this option is located under: CPU Power
Management > CPU Frequency scaling

Menu Configuration Options

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

160 Freescale Semiconductor, Inc.

The following options can be selected:

• CPU Frequency scaling
• CPU frequency translation statistics
• Default CPU frequency governor (interactive)
• Performance governor
• Powersave governor
• Userspace governor for userspace frequency scaling
• Interactive CPU frequency policy governor
• Conservative CPU frequency governor
• CPU frequency driver for i.MX CPUs

20.2.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

Chapter 20 CPU Frequency Scaling (CPUFREQ) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 161

Menu Configuration Options

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

162 Freescale Semiconductor, Inc.

Chapter 21
Dynamic Bus Frequency Driver

21.1 Introduction
In order to improve power consumption, the Bus Frequency driver dynamically manages
the various system frequencies.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24MHz and its
maximum frequency. Similarly the AHB frequency is varied between 24MHz and
132MHz.

21.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc) based on peripheral activity and CPU loading.

21.1.2 Software Operation

The bus frequency depends on the usecount of the various clocks in the system for its
operation. Drivers enable/disable their clocks based on peripheral activity. Every
peripheral is associated with a frequency setpoint. The bus frequency will set the system
frequency to highest frequency setpoint based on the peripherals that are currently active.

The following setpoints are defined for all i.MX 6 platforms:

1. High Frequency Setpoint: AHB is at 132MHz, AXI is at 264Mhz and DDR is at the
maximum frequency. This mode is used when most periphrals that need higher frequency
for good performance are active. For ex, video playback, graphics processing etc.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 163

2. Audio Playback setpoints : AHB is at 25MHz, AXI is at 50MHz and DDR is at
50MHz. This mode is used in audio playback mode.

3. Low Frequency setpoint: AHB is at 24MHz, AXI is at 24MHz and DDR is at 24MHz.
This mode is used when the system is idle waiting for user input (display is off).

To Enable the bus frequency driver, use the following command:

echo 1 > /sys/devices/platform/imx_busfreq.0/enable

To Disable the bus frequency driver, use the following command:

echo 0 > /sys/devices/platform/imx_busfreq.0/enable

21.1.3 Source Code Structure

Table below lists the source files and headers available in the following directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6

Table 21-1. BusFrequency Driver Files

File Description

bus_freq.c Bus Frequency functions

mx6_mmdc.c, mx6_ddr_freq.S DDR frequency change functions

21.2 Menu Configuration Options
There are no menu configuration options for this driver. The Bus Frequency drivers is
included and enabled by default.

21.2.1 Board Configuration Options

There are no board configuration options for the Linux busfreq device driver.

Menu Configuration Options

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

164 Freescale Semiconductor, Inc.

Chapter 22
Thermal Driver

22.1 Introduction
Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines three trip points: critical, hot, and active. Cooling device will take actions to
protect the SoC according to different trip points that SoC has reached:

• When reaching critical point, cooling device will reset the system.
• When reaching hot point, cooling device will lower CPU frequency and notify GPU

to run at a lower frequency.
• When the temperature drops to below active point, cooling device will release all the

cooling actions.

Thermal driver has two parts:

• Thermal zone defines trip points and monitors the SoC's temperature.
• Cooling device takes the actions according to different trip points.

22.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitoring function and protection.
It creates a system file interface of /sys/class/thermal/thermal_zone0/ for user. Internally,
the thermal driver will monitor the SoC temperature and do necessary protection
according to different trip points that SoC's temperature reaches.

22.2 Hardware Operation
The thermal driver uses an internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 165

All the related modules are in SoC.

22.2.1 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. The structure
thermal_zone_device_ops describes the necessary interface that the thermal framework
needs. The framework will call the related thermal zone interface to monitor the SoC
temperature and do the cooling protection.

22.3 Driver Features
The thermal driver supports the following features:

• Thermal zone monitors the SoC temperature.
• Cooling device protects the SoC when the temperature reaches hot or critical points.

22.3.1 Source Code Structure

Table below shows the driver source files available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/thermal

Table 22-1. Thermal Driver Files

File Description

thermal.c thermal zone driver source file

cooling.c cooling device source file

22.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the ./ltib -c command when located in the <ltib dir>. On the displayed
screen, select Configure the Kernel and exit. When the next screen appears, select the
following options to enable this module:

Device Drivers > MXC support drivers > ANATOP_THERMAL > Thermal Zone

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

166 Freescale Semiconductor, Inc.

22.3.3 Programming Interface

The thermal driver can be accessed through /sys/class/thermal/thermal_zone/.

22.3.4 Interrupt Requirements

The thermal driver uses irq #81. Set the alarm value to critical trip point. When the
temperature exceeds the critical trip point, the interrupt handler will reset the system to
protect SoC.

22.4 Unit Test
Modify the trip point's temperature through /sys/class/thermal/thermal_zone0/
trip_point_x_temp. Here, 'x' can be 0, 1 and 2, indicating critical, hot and active trip
point, and the value of trip points should be critical > hot > active. Then run some
program to make SoC in heavy loading. When the SoC temperature reaches the trip
points, the thermal driver will take action to do some protections according to each trip
point's mechanism. Restore the trip point's temperature. When SoC temperature drops to
below active trip point, thermal driver will remove all the protections.

Chapter 22 Thermal Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 167

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

168 Freescale Semiconductor, Inc.

Chapter 23
Anatop Regulator Driver

23.1 Introduction
The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

23.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Using seven LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, the number of external supplies is reduced to
two. Missing from this external supply total are the necessary external supplies to power
the desired memory interface. This will change depending on the type of external
memory selected. Other supplies might also be necessary to supply the voltage to the
different I/O power segments if their I/O voltage needs to be different than what is
provided above.

Some internal regulators can be bypassed, so that external PMIC can supply these power
directly to decrease power numer, such as VDD_SOC and VDD_ARM.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 169

23.2 Driver Features
The Anatop regulator driver is based on regulator core driver. The following services are
provided for regulator control:

• Switching ON/OFF all voltage regulators.
• Setting the value for all voltage regulators.
• Getting the current value for all voltage regulators.

23.2.1 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

23.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux 2.6 kernel. It is intended to provide voltage and
current control to client or consumer drivers and also provide status information to user
space applications through a sysfs interface. The intention is to allow systems to
dynamically control regulator output to save power and prolong battery life. This applies
to both voltage regulators (where voltage output is controllable) and current sinks (where
current output is controllable).

For more details, visit http://opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

• regulator_get used to lookup and obtain a reference to a regulator:
• struct regulator *regulator_get(struct device *dev, const char *id);

• regulator_put used to free the regulator source:
• void regulator_put(struct regulator *regulator, struct device *dev);

• regulator_enable used to enable regulator output:
• int regulator_enable(struct regulator *regulator);

• regulator_disable used to disable regulator output:
• int regulator_disable(struct regulator *regulator);

• regulator_is_enabled is the regulator output enabled:
• int regulator_is_enabled(struct regulator *regulator);

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

170 Freescale Semiconductor, Inc.

http://opensource.wolfsonmicro.com/node/15

• regulator_set_voltage used to set regulator output voltage:
• int regulator_set_voltage(struct regulator *regulator, int uV);

• regulator_get_voltage used to get regulator output voltage:
• int regulator_get_voltage(struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel, see:
<ltib_dir>/rpm/BUILD/linux/drivers/regulator/core.c.

23.2.3 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

• Seven LDO regulators.
• All of the regulator functions are handled by setting the appropriate Anatop hardware

register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

23.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:

<ltib_dir>/rpm/BUILD/linux/drivers/regulator

Table 23-1. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators for i.MX 6DualLite ARM2 or i.MX 6DualLite sabrelite board are
registered under

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/mx6_anatop_regulator.c.

23.2.5 Menu Configuration Options

To get to the Anatop regulator configuration, use the command ./ltib -c when located in
the <ltib dir>. On the configuration screen, select Configure Kernel, and then exit. The
following Linux kernel configurations are provided for the Anatop Regulator driver:

Chapter 23 Anatop Regulator Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 171

• Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.

• System Type > Freescale MXC Implementations > Internal LDO in i.MX 6Quad and
i.MX 6DualLite bypass.

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

172 Freescale Semiconductor, Inc.

Chapter 24
SNVS Real Time Clock (SRTC) Driver

24.1 Introduction
The SNVS Real Time Clock (SRTC) module is used to keep the time and date. It
provides a certifiable time to the user and can raise an alarm if tampering with counters is
detected. The SRTC is composed of two sub-modules: Low power domain (LP) and High
power domain (HP). The SRTC driver only supports the LP domain with low security
mode.

24.1.1 Hardware Operation

The SRTC is a real-time clock with enhanced security capabilities.

It provides an accurate and constant time, regardless of the main system power state and
without the need to use an external on-board time source, such as an external RTC. The
SRTC can wake up the system when a preset alarm threshold is reached.

24.2 Software Operation
The following sections describe the software operation of the SRTC driver.

24.2.1 IOCTL

The SRTC driver complies with the Linux RTC driver model. See the Linux
documentation in <ltib_dir>/rpm/BUILD/linux/Documentation/rtc.txt for information on
the RTC API.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 173

Besides the initialization function, the SRTC driver provides IOCTL functions to set up
the RTC timers and alarm functions. The following RTC IOCTLs are implemented by the
SRTC driver:

• RTC_RD_TIME
• RTC_SET_TIME
• RTC_AIE_ON
• RTC_AIE_OFF
• RTC_ALM_READ
• RTC_ALM_SET

The driver information can be access by the proc file system. For example:

root@freescale /unit_tests$ cat /proc/driver/rtc
rtc_time : 12:48:29
rtc_date : 2009-08-07
alrm_time : 14:41:16
alrm_date : 1970-01-13
alarm_IRQ : no
alrm_pending : no
24hr : yes

24.2.2 Keeping Alive in the Power Off State

To preserve the time when the device is in the power-off state, the SRTC clock source
should be set to CKIL and the voltage input, NVCC_SRTC_POW, should remain active.
Usually these signals are connected to the PMIC and software can configure the PMIC
registers to enable the SRTC clock source and power supply.

Generally, when the main battery is removed and the device is in power-off state, a coin-
cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of
the coin-cell battery should be sufficient to power the SRTC. If the coin-cell battery is
chargeable, it is recommended to automatically enable the coin-cell charger so that the
SRTC is properly powered.

24.3 Driver Features
• Implementing all the functions required by Linux to provide the real-time clock and

alarm interrupt.
• Reserveing time in power-ff state.
• Alarm wakes up the system from low-power modes.

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

174 Freescale Semiconductor, Inc.

24.3.1 Source Code Structure
<ltib_dir>/rpm/BUILD/linux/drivers/rtc

Table below shows the RTC module files.

Table 24-1. RTC Driver Files

File Description

rtc-snvs.c SNVS RTC driver implementation file

The source file for the SRTC specifies the SRTC function implementations.

24.3.2 Menu Configuration Options

To get to the SRTC driver, use the command ./ltib -c when located in the <ltib dir>. On
the displayed screen, select Configure the kernel and exit. When the next screen
appears, select the following options to enable the SRTC driver:

• Device Drivers > Real Time Clock > Freescale SNVS Real Time Clock

Chapter 24 SNVS Real Time Clock (SRTC) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 175

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

176 Freescale Semiconductor, Inc.

Chapter 25
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver

25.1 ALSA Sound Driver Introduction
The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

• Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces

• Fully modularized sound drivers
• SMP and thread-safe design
• User space library (alsa-lib) to simplify application programming and provide higher

level functionality
• Support for the older Open Sound System (OSS) API, providing binary compatibility

for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODECs.

The ASoC layer also provides the following features:
• CODEC independence, allows reuse of CODEC drivers on other platforms and

machines.
• Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface

and CODEC registers its audio interface capabilities with the core.
• Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology

designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 177

• Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.

• Machine specific controls, allows machines to add controls to the sound card, for
example, volume control for speaker amp.

ALSA Sound Driver Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

178 Freescale Semiconductor, Inc.

Figure 25-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 179

• Machine driver-handles any machine specific controls and audio events, such as
turning on an external amp at the beginning of playback.

• Platform driver-contains the audio DMA engine and audio interface drivers (for
example, I2S, AC97, PCM) for that platform.

• CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC I/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the linux source tree at linux/Documentation/sound/alsa/soc and at http://www.alsa-
project.org/main/index.php/ASoC.

25.2 SoC Sound Card
Currently, the stereo CODEC (wm8962), 7.1 CODEC (cs42888), and AM/FM CODEC
drivers are implemented by using SoC architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback, while enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC is only supported on the i.MX 6Quad Sabre-
AI platform.

The AM/FM CODEC is only supported on the i.MX 6Quad
Sabre-AI platform.

25.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

• Sample rates for playback and capture are 8KHz, 32 KHz, 44.1 KHz, 48 KHz, and 96
KHz

• Channels:
• Playback: supports two channels.
• Capture: supports two channels.

• Audio formats:
• Playback:

• SNDRV_PCM_FMTBIT_S16_LE

SoC Sound Card

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

180 Freescale Semiconductor, Inc.

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

• SNDRV_PCM_FMTBIT_S20_3LE
• SNDRV_PCM_FMTBIT_S24_LE

• Capture:
• SNDRV_PCM_FMTBIT_S16_LE
• SNDRV_PCM_FMTBIT_S20_3LE
• SNDRV_PCM_FMTBIT_S24_LE

25.2.2 7.1 Audio Codec Features
• Sample rates for playback and record:

• 48 KHz, 96 KHz, 192 KHz
• Playback: 5.512k, 8k, 11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k, 96k,

176.4k, 192k(ASRC enabled)
• Channels:

• Playback: 2, 4, 6, 8 channels
• Playback(ASRC enabled): 2, 6 channels
• Capture: 2, 4 channels

• Audio formats:
• Playback:

• SNDRV_PCM_FMTBIT_S16_LE
• SNDRV_PCM_FMTBIT_S20_3LE
• SNDRV_PCM_FMTBIT_S24_LE

• Playback(ASRC enabled):
• SNDRV_PCM_FMTBIT_S16_LE
• SNDRV_PCM_FMTBIT_S24_LE

• Capture:
• SNDRV_PCM_FMTBIT_S16_LE
• SNDRV_PCM_FMTBIT_S20_3LE
• SNDRV_PCM_FMTBIT_S24_LE

25.2.3 AM/FM Codec Features
• Supported sample rate for Capture: 48 KHz
• Supported channels:

• Capture: supports two channels.
• Supported audio formats:

• Capture: SNDRV_PCM_FMTBIT_S16_LE

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 181

25.2.4 Sound Card Information

The following is the registered sound card information, using the commands aplay -l and
arecord -l. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

25.3 Hardware Operation
The following sections describe the hardware operation of the ASoC driver.

25.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8962 ASoC CODEC driver exports the audio record/playback/mixer APIs
according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

• CODEC DAI and PCM configuration
• CODEC control I/O-using I2C
• Mixers and audio controls
• CODEC audio operations
• DAC Digital mute control

The WM8962 CODEC is registered as an I2C client when the module initializes. The
APIs are exported to the upper layer by the structure snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

182 Freescale Semiconductor, Inc.

25.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the I2C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2-channel or 6-channel playback through ASRC. On the i.MX 6 Sabre-AI board, a
cs42888 codec with 4 audio in port is used, each port receive two channels of data in the
I2S format (network mode), providing 8-channel of playback functionality. This codec
also has two audio output ports connected with ESAI, providing 4-channel of recording
functionality.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

• Codec DAI and PCM configuration
• Codec control I/O, using I2C
• Mixers and audio controls
• Codec audio operations
• DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

25.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

25.4 Software Operation
The following sections describe the software operation of the ASoC driver.

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 183

25.4.1 ASoC Driver Source Architecture

File imx-pcm-dma-mx2.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC
driver and other CODEC driver. This file is responsible for preallocating DMA buffers
and managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. imx-ssi.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wm8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8962.c. imx-wm8962.c is the machine layer
code which creates the driver device and registers the stereo sound card.

The multi-channel codec is connected to the CPU through the ESAI interface. imx-esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multi-channel CODEC and hifi DAI drivers. The direct
hardware operations on the multi-channel CODEC are in cs42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. imx-ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. si4763.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si4763.c. imx-si4763.c is the machine layer
code which creates the driver device and registers the sound card.

The following table shows the stereo CODEC SoC driver source files. These files are
under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 25-1. Stereo Codec SoC Driver Files

File Description

imx/imx-wm8962.c Machine layer for stereo CODEC ALSA SoC

imx/imx-pcm-dma-mx2.c Platform layer for stereo CODEC ALSA SoC

imx/imx-pcm.h Header file for PCM driver and AUDMUX register definitions

imx/imx-ssi.c Platform DAI link for stereo CODEC ALSA SoC

imx/imx-ssi.h Header file for platform DAI link and SSI register definitions

codecs/wm8962.c CODEC layer for stereo CODEC ALSA SoC

codecs/wm8962.h Header file for stereo CODEC driver

The following table lists the AM/FM CODEC SoC driver source files. These files are
under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

184 Freescale Semiconductor, Inc.

Table 25-2. AM/FM Codec SoC Driver Source Files

File Description

imx/imx-si4763.c Machine layer for AM/FM CODEC ALSA SoC

imx/imx-si4763.h Header file for AM/FM CODEC ALSA SoC

imx/imx-pcm-dma-mx2.c Platform layer for stereo CODEC ALSA SoC

imx/imx-pcm.h Header file for pcm driver and AUDMUX register definitions

imx/imx-ssi.c Platform DAI link for stereo CODEC ALSA SoC

imx/imx-ssi.h Header file for platform DAI link and SSI register definitions

codecs/si4763.c Codec layer for stereo CODEC ALSA SoC

The following table shows the multiple-channel ADC SoC driver source files. These files
are also under the <ltib_dir>/rpm/BUILD/linux/sound/soc directory.

Table 25-3. CS42888 ASoC Driver Source File

File Description

imx/imx-cs42888.c Machine layer for mutliple-channel CODEC ALSA SoC

imx/imx-pcm-dma-mx2.c Platform layer for mutliple-channel CODEC ALSA SoC

imx/imx-pcm.h Header file for pcm driver

imx/imx-esai.c Platform DAI link for mutliple-channel CODEC ALSA SoC

imx/imx-esai.h Header file for platform DAI link

codecs/cs42888.c CODEC layer for mutliple-channel codec ALSA SoC

codecs/cs42888.h Header file for mutliple-channel CODEC driver

25.4.2 Sound Card Registration

The CODECs have the same registration sequence:

1. The CODEC driver registers the CODEC driver, DAI driver, and their operation
functions.

2. The platform driver registers the PCM driver, CPU DAI driver and their operation
functions, pre-allocates buffers for PCM components and sets playback and capture
operations as applicable.

3. The machine layer creates the DAI link between CODEC and CPU registers the
sound card and PCM devices.

25.4.3 Device Open

The ALSA driver performs the following functions:

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 185

• Allocates a free substream for the operation to be performed.
• Opens the low-level hardware device.
• Assigns the hardware capabilities to ALSA runtime information (the runtime

structure contains all the hardware, DMA, and software capabilities of an opened
substream).

• Configures DMA read or write channel for operation.
• Configures CPU DAI and CODEC DAI interface.
• Configures CODEC hardware.
• Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

25.4.4 Platform Data

struct mxc_audio_platform_data defined in include/linux/fsl_devices.h is used to pass the
platform data of audio CODEC.

The value of platform data needs to be updated according to Hardware design.

Take wm8962 CODEC platform data as a example to show the parameter of
mxc_audio_platform_data. See header file for the details of more variables.

• ssi_num indicates which SSI channel is used.
• src_port indicates which AUDMUX port is connected with SSI.
• ext_port indicates which AUDMUX port is connected with external audio CODEC.
• hp_gpio: The IRQ line used for headphone detection.
• hp_active_low: When headphone is inserted, the detection pin status. If pin voltage

level is low, the value should be 1.
• mic_gpio: The IRQ line used for micphone detection
• mic_active_low: When micphone is inserted, the detection pin status, if pin voltage

level is low, the value should be 1.
• init: The callback function to initialize audio CODEC. For example, configure the

clock of audio CODEC.
• clock_enable: The callback function to enable or disable clock for audio CODEC.

25.4.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module:

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

186 Freescale Semiconductor, Inc.

To get to these options, use the ./ltib -c command when located in the <ltib dir>. Select
Configure the Kernel on the displayed screen and exit. When the next screen appears,
select the following options to enable this module:

• SoC Audio supports for wm8962 CODEC. In menu configuration, this is option is
available under Device drivers > Sound card support > Advanced Linux Sound
Architecture > ALSA for SoC audio support > SoC Audio for the Freescale i.MX
CPU, SoC Audio support for WM8962

• SoC Audio supports for i.MX cs42888. In menu configuration, this is option is
available under Device drivers > Sound card support > Advanced Linux Sound
Architecture > ALSA for SoC audio support > SoC Audio support for IMX -
CS42888

• SoC Audio supports for AM/FM. In menu configuration, this is option is available
under Device drivers-> Sound card support-> Advanced Linux Sound Architecture->
ALSA for SoC audio support > SoC Audio for the Freescale i.MX CPU, SoC Audio
support for IMX SI4763

25.5 Unit Test
This section shows how to use ALSA driver, and assume the rootfs is GNOME.

25.5.1 Stereo CODEC Unit Test

Stereo CODEC driver supports playback and record features. There are a default volume,
and you may adjust volume by alsamixer command.

Playback feature may be tested by the following command:

• aplay [-Dplughw:0,0] audio.wav

Record feature supports analog micphone and digital micphone. The default is digital
micphone if analog micphone isn't plug-in.

Because analog micphone is connected to IN3R port of WM8962 CODEC, the following
amixer commands are needed to input into command line for enabling analog micphone.

• amixer sset 'MIXINR IN3R' on
• amixer sset 'INPGAR IN3R' on

The recording feature may be tested by the following command:

• arecord [-Dplughw:0,0] -r 44100 -f S16_LE -c 2 -d 5 record.wav

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 187

More usage for aplay/arecord/amixer may be obtained by the following commands.

• aplay --h
• arecord --h
• amixer --h

25.5.2 7.1 Audio Codec Unit Test

The 7.1 Audio codec driver supports multi-channel playback and record feature. The
codec has a default volume, and you can adjust volume by alsamixer command.

The playback feature can be tested by the following command:

• aplay [-Dplughw:0,0] audio.wav

While enabling ASRC, the 7.1 audio codec should use the device 1 for playback. The
codec has a default volume, and you can adjust volume by alsamixer command.

• aplay [-Dplughw:0,1] audio.wav

The recording feature supports line in and mic in simultaneously. While on i.MX 6
Sabre-AI board, LINE-IN (L/R) uses AIN1/AIN2, and MICS1/MICS2 uses AIN3/AIN4.
By default, 2-ch record uses AIN1/AIN2, and 4-ch record uses AIN1/AIN2/AIN3/AIN4
together.

The recording feature can be tested by following command:

• arecord [-Dplughw:0,0] -r 48000 -f S16_LE -c 2 -d 5 record.wav

Note:The default ALSA config file, asound.conf located under /etc/, only supports stereo
playback and record, which means, if you want to test 4,6,8-ch playback or 4-ch
recording, and use aplay audio.wav or arecord -c 4 audio.wav(without -Dplughw), you
will have to make slight changes to the configure file as following:

• Make sure that playback PCM uses dmix_48000 and capture PCM uses
dsnoop_48000 under pcm.asymed{}.

• Add "channels x" to the end of struct pcm.dmix_48000{} if you want to playback x-
ch wav file(x is greater than 2).

• Add "channels x" to the end of struct pcm.!dsnoop_48000{} if you want to record to
x-ch wav(x is greater than 2).

If plug plughw is used to make a playback or record, examples are as follows:

• aplay: Dplughw:0,0 audio.wav or
• arecord: Dplughw:0,0 -c 4 -r 48000 -f S16_LE record.wav

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

188 Freescale Semiconductor, Inc.

You are not required to change asound.conf because this configuration file is not used
here.

More usage for aplay/arecord/amixer can be obtained by the following commands.

• aplay --h
• arecord --h
• amixer --h

25.5.3 AM/FM Codec Unit Test

This test turns on the AM/FM radio tuner (SI4763). It also sets and gets the current
station.

NOTE: An underrun error may occur sometimes.

This underrun behaviour is normal, since the test connects the AM/FM output to the
audio codec by a simple pipe.

There is no synchronization method between them. Upper layers (such as gstreamer
plugins) should be responsible for synchronization.

Input the following command in command line to start unit test:

• ./mxc_tuner_test.sh

The following infomation will be output to console window:

Welcome to radio menu.

1. Turn on the radio

2. Get current frequency

3. Set current frequency

4. Turn off the radio

9. Exit.

• To turn on the radio, select option 1.
• To get the current frequency, select option 2.
• To set the desire frecuency, select option 3 <enter> set the frequency <9740>.
• To turn off the radio, select option 4.
• To Exit select, option 9.

Chapter 25 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 189

Unit Test

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

190 Freescale Semiconductor, Inc.

Chapter 26
Asynchronous Sample Rate Converter (ASRC)
Driver

26.1 Introduction
The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal
to a signal of different sampling rate. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to
three sampling rate pairs simultaneously.

26.1.1 Hardware Operation
• Supports ratio (Fsin/Fsout) ranging from 1/24 to 8.
• Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.
• Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but

with less performance (see IC spec for more details).
• Other output sampling rates in the range of 30 KHz to 100 KHz are also supported,

but with less performance.
• Automatic accommodation to slow variations in the incoming and outgoing sampling

rates.
• Tolerant to sample clock jitter.
• Designed mainly for real-time streaming audio usage. Can be used for non-realtime

streaming audio usage when the input sampling clocks are not available.
• In any usage case, the output sampling clocks must be activated.
• In case of real-time streaming audio, both input and output clocks need to be

available and activated.
• In case of non-realtime streaming audio, the input sampling rate clocks can be

avoided by setting ideal-ratio values into ASRC interface registers.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 191

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in
the platform for better performance. The ASRC supports the following DMA channels:

• Peripheral to peripheral, for example: ASRC to ESAI
• Memory to peripheral, for example: memory to ASRC
• Peripheral to memory, for example: ASRC to memory

For more information, see the chapter on ASRC in the Multimedia Applications
Processor documentation.

26.2 Software Operation
As an assistant component in the audio system, the ASRC driver implementation depends
on the use cases in the platform.

Currently ASRC is used in following two scenarios:

• Memory > ASRC > Memory, ASRC is controlled by user application or ALSA plug-
in.

• Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA driver.

Figure 26-1. Audio Driver Interactions

As illustrated in figure above, the ASRC stream interface provides the interface for the
user space. The ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/
driver/asrc when the module is inserted. proc is used to track the channel number for each

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

192 Freescale Semiconductor, Inc.

pair. If all the pairs are not used, users can adjust the channel number through the proc
file. The total channels number should be 10. Otherwise, the adjusted value cannot be
saved properly.

Now 7.1 audio codec driver supports calling ASRC driver for memroy > ASRC >
perripheral(ESAI TX). The input audio file is convert into board defined sampling
rate(for example, 48khz). This use case only supports 2-channel or 6-channel playback.
To call this use case, perform the the following steps::

• Call aplay -l | grep ASRC to get the card number and device number of playback
PCM. The device name is CS42888_ASRC. For example, the card number is 0 and
the device number is 1.

• Play the audio file with the card0device1 device. For example, aplay -Dplughw:0,1
$AUDIO_FILE.

26.2.1 Sequence for Memory to ASRC to Memory
• Start the /dev/mxc_asrc device.
• Request ASRC pair. (ASRC_REQ_PAIR)
• Configure ASRC pair. (ASRC_CONIFG_PAIR)
• Start ASRC. (ASRC_START_CONV)
• Write the raw audio data (to be converted) into the user maintained input buffer. Fill

asrc_convert_buffer struct with input/output buffer length and address. Driver would
copy output data to user maintained output buffer address according to the output
buffer size. Repeat this step until all data is converted. (ASRC_CONVERT)

• Stop ASRC conversion: (ASRC_STOP_CONV)
• Release ASRC pair. (ASRC_RELEASE_PAIR)
• Shut down the /dev/mxc_asrc device.

26.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1
audio sound card, a new device with the name of CS42888_ASRC is specified for
playback with ASRC. The steps below show the flow of calling ASRC to memroy to
peripheral:

• The sound device (PCM) has been registered and start to enable the DMA channel in
ALSA driver.

• Request ASRC pair. (asrc_req_pair)
• Configure ASRC pair. (asrc_config_pair)

Chapter 26 Asynchronous Sample Rate Converter (ASRC) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 193

• Enable the DMA channel from Memory to ASRC and from ASRC to Memory.
• Start DMA channel and start ASRC conversion. (asrc_start_conv)
• When audio data playback complete, stop DMA channel and ASRC.

(asrc_stop_conv)
• Release ASRC pair. (asrc_release_pair)

26.3 Source Code Structure
Table below lists the source files available in the devices directory.

<ltib_dir>/rpm/BUILD/linux/drivers/mxc/asrc
<ltib_dir>/rpm/BUILD/linux/include/linux/
<ltib_dir>/rpm/BUILD/linux/sound/soc/imx/
<ltib_dir>/rpm/BUILD/linux/sound/soc/codec/

Table 26-1. ASRC Source File List

File Description

mxc_asrc.c ASRC driver implementation codes including stream interface

mxc_asrc.h ASRC register definitions and export function declarations

imx-cs42888.c memory to ASRC to ESAI TX implementation in 7.1 audio codec machine driver.

imx-pcm-dma-mx2.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec platform driver.

imx-esai.c memroy to ASRC to ESAI TX implementation in 7.1 audio codec cpu driver.

cs42888.c memory to ASRC to ESAI TX implementation in 7.1 audio codec codec driver.

26.3.1 Linux Menu Configuration Options

Device drivers > MXC support drivers > MXC Asynchronous Sample Rate Converter
support > ASRC support.

The ASRC driver can only be configured with build-in module.

26.4 Platform Data
struct mxc_asrc_platform_data defined in arch/arm/plat-mxc/include/mach/mxc_asrc.h is
used to transfer the platform information of ASRC according to different SOC.

• channel_bits: indicates the channel bit information.
• clk_map_ver: The mapping relationships in different SOC are different. This version

number can be used to indicate clock map information.

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

194 Freescale Semiconductor, Inc.

• asrc_core_clk: ASRC core clock information, which is used for ASRC register
access.

• asrc_audio_clk: ASRC process clock, which is used for input/output clock source.

26.4.1 Programming Interface (Exported API and IOCTLs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.

ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in
struct asrc_config. Items in asrc_config are as follows:

• pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).
• channel_num: channel number.
• buffer_num: buffer number required by input and output buffer. The input/output

buffers are allocated inside ASRC driver. The user is responsible for remapping it
into user space.

• dma_buffer_size: buffer size for input and output buffers. The buffer size should be
in the unit of page size. Usually, 4 KB is used.

• input_sample_rate: input sampling rate. Input sample rate should be 5.512k, 8k,
11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k 96k, 176.4k, or 192k.

• output_sample_rate: output sampling rate. Output sampling rate should be 32k,
44.1k, 48k, 64k, 88.2k, 96k, 176.4k, or 192k.

• input_word_width: word width of input audio data. The input data word width can be
16 bit or 24 bit.

• output_word_width: word width of output audio data. The output data word width
can be 16 bit or 24 bit.

• inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock,
SPDIF RX clock, MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock,
SPDIF TX clock, ASRCLK1 clock, or NONE. If using clock except NONE, the user
should make sure that the clock is available.

• outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by
ASRC_CONFIG_PAIR. Driver would copy input_buffer_length bytes data from the
input_buffer_vaddr for conversion. After conversion, the driver fills the

Chapter 26 Asynchronous Sample Rate Converter (ASRC) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 195

output_buffer_length according to data number generated by ASRC and copy
output_buffer_length to output_buffer_vaddr. However, before calling
ASRC_CONVERT, the user needs to fill the output_buffer_length according to the ratio
of input sample rate and output sample rate. If the generated buffer size is larger than the
user filled output_buffer_size, the driver would only copy user filled output_buffer_size
to output_buffer_vaddr. If the generated buffer size is smaller than user filled
output_buffer_size (with the difference of less than 64 bytes), calling ASRC_CONVERT
would fail.

• input_buffer_vaddr: virtual address of input buffer.
• output_buffer_vaddr: virtual address of output buffer.
• input_buffer_length: length of input buffer(bytes).
• output_buffer_length: length of output buffer(bytes).

ASRC_START_CONV:

Start ASRC pair convert.

ASRC_STOP_CONV:

Stop ASRC pair convert.

ASRC_STATUS:

Query ASRC pair status.

Platform Data

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

196 Freescale Semiconductor, Inc.

Chapter 27
The Sony/Philips Digital Interface (S/PDIF) Driver

27.1 Introduction
The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that
allows the processor to receive and transmit digital audio. The S/PDIF transceiver allows
the handling of both S/PDIF channel status (CS) and User (U) data. The frequency
measurement block allows the S/PDIF RX section to derive the receive clock from the
incoming S/PDIF stream.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 197

27.1.1 S/PDIF Overview

Figure 27-1. S/PDIF Transceiver Data Interface Block Diagram

27.1.2 Hardware Overview

The S/PDIF is composed of two parts:

• The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the
data in the S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are
also extracted from each frame and placed in the corresponding registers. The S/
PDIF receiver provides a bypass option for direct transfer of the S/PDIF input signal
to the S/PDIF transmitter.

• For the S/PDIF transmitter, the audio data is provided by the processor through the
SPDIFTxLeft and SPDIFTxRight registers. The Channel Status bits are provided

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

198 Freescale Semiconductor, Inc.

through the corresponding registers. The S/PDIF transmitter generates a S/PDIF
output bitstream in the biphase mark format (IEC958), which consists of audio data,
channel status and user bits.

In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of
the S/PDIF Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF
internal clock dividers and the sources are from outside of the S/PDIF block. The S/PDIF
receiver can recover the S/PDIF Rx clock from the S/PDIF stream. Figure 27-1 shows the
clock structure of the S/PDIF transceiver.

27.1.3 Software Overview

The S/PDIF driver is designed at the ALSA System on Chip (ASoC) layer. The ASoC
driver for S/PDIF provides one playback device for Tx and one capture device for Rx.
The playback output audio format can be linear PCM data or compressed data with 16-
bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 and 32 KHz. The
capture input audio format can be linear PCM data or compressed 24-bit data and the
allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface
for PCM and compressed data transmission.

27.1.4 ASoC layer

The ASoC layer divides audio drivers for embedded platforms into separated layers that
can be reused. ASoC divides an audio driver into a codec driver, a machine layer, a DAI
(digital audio interface) layer, and a platform layer. The Linux kernel documentation has
some concise description of these layers in linux/Documentation/sound/alsa/soc. In the
case of the S/PDIF driver, you can reuse the platform layer (imx-pcm-dma-mx2.c) that is
used by the ssi stereo codec driver.

27.2 S/PDIF Tx Driver
The S/PDIF Tx driver supports the following features:

• 32, 44.1 and 48 KHz sample rates.

• Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the
24-bit output sample file must have 32-bits in each channel per frame. Only the 24
LSBs are valid.

• In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

Chapter 27 The Sony/Philips Digital Interface (S/PDIF) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 199

• Two channels.
• Information query.
• The device ID can be determined by using the "aplay -l" utility to list out the

playback audio devices.

For example:

root@freescale ~$ aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: imxspdif [imx-spdif], device 0: IMX SPDIF mxc-spdif-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

• NOTE
The number at the beginning of the MXC_SPDIF line is the
card ID. The string in the square brackets is the card name.

• The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers

#aplay -Dplughw:0,0 audio.wav

NOTE
The -D parameter of aplay indicates the PCM device with
card ID and PCM device ID: hw:[card id],[pcm device id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#ciecset -c 1

27.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are
initialized. During S/PDIF playback, the channel status bits are fixed. The DMA and
interrupts are enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel
respectively. When both FIFOs are empty, an empty interrupt is generated if the empty
interrupt is enabled. If no data are refilled in the 20.8 μs (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel
every time. If auto re-synchronization is enabled, the hardware checks if the left and right
FIFO are in synchronization. If not, it sets the filling pointer of the right FIFO to be equal
to the filling pointer of the left FIFO and an interrupt is generated.

S/PDIF Tx Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

200 Freescale Semiconductor, Inc.

27.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the
user besides the common PCM operations interface. It provides the interface for the user
to write S/PDIF channel status codes into the driver so they can be sent in the S/PDIF
stream. The input parameter of this interface is the IEC958 digital audio structure shown
below, and only status member is used:

struct snd_aes_iec958 {
 unsigned char status[24]; /* AES/IEC958 channel status bits */
 unsigned char subcode[147]; /* AES/IEC958 subcode bits */
 unsigned char pad; /* nothing */
 unsigned char dig_subframe[4]; /* AES/IEC958 subframe bits */
};

27.3 S/PDIF Rx Driver
The S/PDIF Rx driver supports the following features:

• 16, 32, 44.1, 48, 64 and 96 KHz receiving sample rates.
• Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each

channel bit length in PCM recorded frame is 32 bits, and only the 24 LSBs are valid.

In ALSA subsystem, the supported format is defined to S24_LE.

• Two channels.
• The device ID can be determined by using the arecord -l to list out record devices.

For example:

root@freescale ~$ arecord -l

**** List of CAPTURE Hardware Devices ****

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: IMX SPDIF mxc-spdif-0 []

 Subdevices: 1/1

 Subdevice #0: subdevice #0

• The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers.

#arecord -Dplughw:1,0" -c 2 -r 44100 -f S24_LE record.wav

Chapter 27 The Sony/Philips Digital Interface (S/PDIF) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 201

NOTE
The -D parameter of the arecord indicates the PCM device
with card ID and PCM device ID: hw:[card id],[pcm device
id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

27.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for
the internal DPLL to be locked. By using the high speed system clock, the internal DPLL
can extract the bit clock (advanced pulse) from the input bit stream. When this internal
DPLL is locked, the LOCK bit of PhaseConfig Register is set and the driver configures
the interrupt, clock and SDMA channel. After that, the driver can receive audio data,
channel status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers.
The driver reads them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD.
The mode is determined by the USyncMode (bit 1 of CDText_Control register). The user
can call the sound control interface to set the mode (see Table 27-1), but no matter what
the mode is, the driver handles the user bits in the same way. For the S/PDIF Rx, the
hardware block copies the Q bits from the user bits to the QChannel registers and puts the
user bits in UChannel registers. The driver allocates two queue buffers for both U bits
and Q bits. The U bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2
bytes in size, and queue buffers are filled in the U/Q Full, Err and Sync interrupt
handlers. This means that the user can get the previous ready U/Q bits while S/PDIF
driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt
status upon reception. A sound control interface is provided for the user to get the status
of this valid bit.

27.3.2 Provided User Interfaces

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

S/PDIF Rx Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

202 Freescale Semiconductor, Inc.

Table 27-1. S/PDIF Rx Driver Interfaces

Interface Type Mode1 Parameter Comment

Common PCM PCM - - PCM open/close

prepare/trigger

hw_params/sw_params

Rx Sample
Rate

Sound
Control2

r Integer

Range: [16000, 96000]

Get sample rate. It is not accurate due to DPLL
frequency measure module. So the user
application must do a correction to the get
value.

USyncMode Sound
Control

rw Boolean

Value: 0 or 1

Set 1 for CD mode

Set 0 for non-CD mode

Channel Status Sound
Control

r struct snd_aes_iec958

Only status [6] array member is used

-

User bit Sound
Control

r Byte array

96 bytes for U bits

12 bytes for Q bits

-

No good V bit Sound
Control

r Boolean

Value: 0 or 1

An interrupt is associated with the valid flag.
(interrupt 16 - SPDIFValNoGood). This interrupt
is set every time a frame is seen on the SPDIF
interface with the valid bit set to invalid.

1. The mode column shows the interface attribute: r (read) or w (write)
2. The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 27-2 to use the S/PDIF Rx
driver.

1. The application opens the S/PDIF Rx PCM device, waits for the DPLL to lock the
input bit stream, and gets the input sample rate. If the USyncMode needs to be set,
set it before reading the U/Q bits.

2. Set the hardware parameters, including the channel number, format and capture
sample rate which is obtained from the driver.

3. Call the preparation and triggering function to start S/PDIF Rx stream reading.
4. Call the reading function to get the data. During the reading process, applications can

read the U/Q bits and channel status from the driver and validates the illegal bits.

Chapter 27 The Sony/Philips Digital Interface (S/PDIF) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 203

Figure 27-2. S/PDIF Rx Application Program Flow

27.4 Source Code Structure
The following table lists the source files for the driver.

These files are under the <ltib_dir>/rpm/BUILD/linux/ directory.

Table 27-2. S/PDIF Driver Files

File Description

sound/soc/codecs/mxc_spdif.c S/PDIF ALSA SOC codec driver

sound/soc/codecs/mxc_spdif.h S/PDIF ALSA SOC codec driver header

sound/soc/imx/imx-spdif.c S/PDIF ALSA SOC machine layer

Table continues on the next page...

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

204 Freescale Semiconductor, Inc.

Table 27-2. S/PDIF Driver Files (continued)

File Description

sound/soc/imx/imx-spdif-dai.c S/PDIF ALSA SOC DAI layer

sound/soc/imx/imx-pcm-dma-mx2.c ALSA SOC platform layer

sound/soc/imx/imx-pcm.h ALSA SOC platform layer header

27.5 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

To get to these options, use the ./ltib -c command when located in the <ltib dir>. Select
Configure the Kernel on the displayed screen and exit. When the next screen appears,
select the following options to enable this module:

• CONFIG_SND_MXC_SPDIF: Configuration option for the S/PDIF driver. In the
menuconfig, this option is available under Device Drivers > Sound card support >
Advanced Linux Sound Architecture > ALSA for SoC audio support > SoC Audio
for Freescale i.MX CPUs > SoC Audio support for IMX - S/PDIF

27.6 Platform Data
struct mxc_spdif_platform_data is used to transfer board-specific data to the S/PDIF
driver.

It is defined in include/linux/fsl_devices.h.

• spdif_tx : is 1 if TX is supported on the board.
• spdif_rx : is 1 if RX is supported on the board.
• spdif_clk_44100 : the 44.1KHz transmit clock for the STC register. -1 indicates that

it does not support this sample rate.
• spdif_clk_48000 : the transmit clock used for 48KHz and 32KHz for the STC

register. -1 indicates that it does not support these sample rates.
• spdif_div_44100 : 44.1KHz clock division factor in the STC register.
• spdif_div_48000 : 48KHz clock division factor in the STC register.
• spdif_div_32000 : 32KHz clock division factor in the STC register.
• spdif_rx_clk : rx clock source in mux in SRPC register. Leave as 0 to get clock from

rx stream.
• spdif_core_clk : S/PDIF core clock.

Chapter 27 The Sony/Philips Digital Interface (S/PDIF) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 205

27.7 Interrupts and Exceptions
S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and
event.

The driver handles the following interrupts:

• DPLL Lock and Loss Lock: saves the DPLL lock status. This is used when getting
the Rx sample rate.

• U/Q Channel Full and overrun/underrun: puts the U/Q channel register data into
queue buffer, and update the queue buffer write pointer.

• U/Q Channel Sync: saves the ID of the buffer whose U/Q data is ready for read out.
• U/Q Channel Error: resets the U/Q queue buffer.

27.8 Unit Test Preparation
• Set up the M-Audio Transit USB sound card by installing the M-Audio Transit driver

on your PC.
• Install WaveLab tools on your PC.

27.8.1 Tx test step
1. Plug optical line into [line|optical] port of M-Audio transit.

NOTE
Make sure that the [optical out] port of M-Audio transit has
no output (red light off) after plugging the optical line.

2. Start WaveLab, press the record button on the toolbar, set the record file name,
sample rate, channel number, and then start recording.

3. Run the following command on the board to play one wave file:

#aplay -D hw:[card id],[pcm id] audioXXkYYS.wav

• After finishing aplay, stop recording in WaveLab.
• Play the recorded wav file in wavelab to check if it works properly.

27.8.2 Rx test step
1. Plug optical line into [optical port] of M-Audio transit.

Interrupts and Exceptions

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

206 Freescale Semiconductor, Inc.

2. Start WaveLab, open a test wav file: audioXXkYYS.wav to play in loop.
3. Run the following command on the board to record one wave file. After finishing

recording, you may play back the recorded wav file on other audio card on the board
or PC.

#arecord -D hw:[card id],[pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24_LE record.wav

NOTE
The sample rate argument in the arecord command must be
consistent with the wav file played on WaveLab.

Chapter 27 The Sony/Philips Digital Interface (S/PDIF) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 207

Unit Test Preparation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

208 Freescale Semiconductor, Inc.

Chapter 28
SPI NOR Flash Memory Technology Device (MTD)
Driver

28.1 Introduction
The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash. If RedBoot partitions exist, they have higher priority than static partitions, and the
MTD partitions can be created from the RedBoot partitions.

28.1.1 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it
properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high speed SPI-compatible bus up to 75MHz. The memory is
organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide. Thus,
the whole memory can be viewed as consisting of 16384 pages, or 4,194,304 bytes. The
memory can be programmed 1 to 256 bytes at a time using the Page Program instruction.
The whole memory can be erased using the Bulk Erase instruction, or a sector at a time,
using the Sector Erase instruction.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 209

Unlike conventional Flash memories that are accessed randomly, these two SPI NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

28.1.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. Figure below illustrates the relationships between some of the
standard components.

Figure 28-1. Components of a Flash-Based File System

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash
and RAM, providing simple read, write, and erase access to physical memory devices.
Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMFS file
systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the kernel
by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects a data
Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI NOR
MTD driver also provides the interfaces to read, write, and erase NOR Flash.

28.1.3 Driver Features

This NOR MTD implementation supports the following features:

• Provides necessary information for the upper layer MTD driver

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

210 Freescale Semiconductor, Inc.

28.1.4 Source Code Structure

The SPI NOR MTD driver is implemented in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/

Table below shows the driver files:

Table 28-1. SPI NOR MTD Driver Files

File Description

m25p80.c Source file

28.1.5 Menu Configuration Options

To get to the SPI NOR MTD driver, use the command ./ltib -c when located in the <ltib
dir>. On the screen displayed, select Configure the kernel and exit. When the next screen
appears select the following options to enable the SPI NOR MTD driver accordingly:

• CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

• Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

Chapter 28 SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 211

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

212 Freescale Semiconductor, Inc.

Chapter 29
MMC/SD/SDIO Host Driver

29.1 Introduction
The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC) .

The host driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:

• 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

• Supports card insertion and removal detections.
• Supports the standard MMC commands.
• PIO and DMA data transfers.
• Power management.
• Supports 1/4/8-bit operations for MMC cards.
• Support eMMC4.4 SDR and DDR modes.
• Support SD3.0 SDR50 and SDR104 modes.

29.1.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 213

The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

29.1.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols.
The MMC block driver handles the file system read/write calls and uses the low level
MMC host controller interface driver to send the commands to the uSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit,
request, and set_ios. The driver implements the following functions:

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

214 Freescale Semiconductor, Inc.

• The init function esdhc_pltfm_init() initializes the platform hardware and set platform
dependant flags or values to sdhci_host structure.

• The exit function esdhc_pltfm_exit() deinitializes the platform hardware and frees the
memory allocated.

• The function esdhc_pltfm_get_max_clock() gets the maximum SD bus clock frequency
supported by the platform.

• The function esdhc_pltfm_get_min_clock() gets the minimum SD bus clock frequency
supported by the platform.

• esdhc_pltfm_get_ro() gets the card read only status.
• plt_8bit_width() handles 8 bit mode switching on the platform.
• plt_clk_ctrl() handles clock management on the platform.
• esdhc_prepare_tuning() handles the preparation for tuning. It's only used for SD3.0

UHS-I mode.
• esdhc_post_tuning() handles the post operation for tuning.
• esdhc_set_clock() handles the clock change request.
• cd_irq() it's the interrupt routine for card detect.

Figure below shows how the MMC-related drivers are layered.

Chapter 29 MMC/SD/SDIO Host Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 215

Figure 29-1. MMC Drivers Layering

29.2 Driver Features
The MMC driver supports the following features:

• Supports multiple uSDHC modules.
• Provides all the entry points to interface with the Linux MMC core driver.
• MMC and SD cards.
• SDIO cards.
• SD3.0 cards.
• Recognizes data transfer errors such as command time outs and CRC errors.
• Power management.
• It supports to be built as loadable or builtin module

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

216 Freescale Semiconductor, Inc.

29.2.1 Source Code Structure

Table below shows the uSDHC source files available in the source directory: <ltib_dir>/
rpm/BUILD/linux/drivers/mmc/host/.

Table 29-1. uSDHC Driver Files MMC/SD Driver Files

File Description

sdhci.c sdhci standard stack code

sdhci-pltfm.c sdhci platform layer

sdhci-esdhc-imx.c uSDHC driver

sdhci-esdhc.h uSDHC driver header file

29.2.2 Menu Configuration Options

The following Linux kernel configuration options are provided for this module.

To get to these options, use the ./ltib -c command when located in the <ltib dir>. On the
screen displayed, select Configure the Kernel and exit. When the next screen appears,
select the following options to enable this module:

• CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this
option is available under:

• Device Drivers > MMC/SD/SDIO Card support
• By default, this option is Y.

• CONFIG_MMC_BLOCK builds support for MMC block device driver which can be
used to mount the file system. In menuconfig, this option is available under:

• Device Drivers > MMC/SD Card Support > MMC block device driver
• By default, this option is Y.

• CONFIG_MMC_SDHCI_ESDHC_IMX is used for the i.MX USDHC ports. In
menuconfig, this option is found under:

• Device Drivers > MMC/SD Card Support > Secure Digital Host Controller
Interface support > SDHCI support on the platform specific bus > SDHCI
platform support for the Freescale eSDHC i.MX controller

To compile SDHCI driver as a loadable module, several options should be selected
as indicated below:

• CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

Chapter 29 MMC/SD/SDIO Host Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 217

• CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.

• CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as
indicated below:

• CONFIG_MMC_SDHCI=y, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

• CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers > MMC/
SD Card Support > Secure Digital Host Controller Interface support > SDHCI
support on the platform specific bus.

• CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

• CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under:

• Device drivers > MMC/SD/SDIO Card Support > Assume MMC/SD cards are
non-removable.

29.2.3 Platform Data

struct esdhc_platform_data defined in arch/arm/plat-mxc/include/mach/esdhc.h is used to
pass platform informaton:

• .wp_gpio: GPIO used for write protect detection
• .cd_gpio: GPIO used for card detection
• .always_present: 1 indicates the card is inserted and non-removable, and the card

detect is ignored
• .support_18v: indicate the board could provide 1.8v power to the card.
• .support_8bit: indicate 8 data pins are connected to the card slot.
• .platform_pad_change: callback function used to change the pad settings due to

different SD bus clock frequency
• .keep_power_at_suspend: keep MMC/SD slot power when system enters suspend
• .delay_line: delay line setting for DDR mode

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

218 Freescale Semiconductor, Inc.

29.2.4 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with
the i.MX uSDHC module.

See the Linux document generated from build: make htmldocs.

29.2.5 Loadable Module Operations

The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.
• CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card

Support > Secure Digital Host Controller Interface support
• CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >

MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus.

• CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

2. How to load and unload SDHCI module.

Due to dependency, please load or unload the module following the module sequence
shown below.

run the following commands to load module:
• load modules via insmod command, assuming the files of sdhci.ko and sdhci-

platform.ko exist in current directory.

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

• load modules via modprobe command, please make sure the files of sdhci.ko and
sdhci-platform.ko exist in corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
• unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

• unload modules via modprobe command.

Chapter 29 MMC/SD/SDIO Host Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 219

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

220 Freescale Semiconductor, Inc.

Chapter 30
NAND GPMI Flash Driver

30.1 Introduction
The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the i.MX 6Solo/6DualLite.

Only the hardware specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

30.1.1 Hardware Operation

NAND Flash is a nonvolatile storage device used for embedded systems.

It does not support random accesses of memory as in the case of RAM or NOR Flash.
Reading or writing to NAND Flash must be done through the GPMI. NAND Flash is a
sequential access device appropriate for mass storage applications. Code stored on
NAND Flash can not be executed from there. Code must be loaded into RAM memory
and executed from there. The i.MX 6Solo/6DualLite contains a hardware error-correcting
block.

30.2 Software Operation
MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 221

or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The
hardware specific driver interfaces with the GPMI module on i.MX 6Solo/6DualLite. It
implements the lowest level operations such as read, write and erase. If enabled, it also
provides information about partitions on the NAND device-this information has to be
provided by platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at http://www.linux-
mtd.infradead.org

30.2.1 Basic Operations: Read/Write

The NAND driver exports the following callbacks:

mil_ecc_read_page (with ECC)
mil_ecc_write_page (with ECC)
mil_read_byte (without ECC)
mil_read_buf (without ECC)
mil_write_buf (without ECC)
mil_ecc_read_oob (with ECC)
mil_ecc_write_oob (with ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the mil_incoming_buffer_dma_begin function is called, which creates
the DMA chain, submits it to execute, and waits for completion. The write case is a bit
more complex: the data to be written is mapped and flushed out by calling
mil_incoming_buffer_dma_begin before processing the command
NAND_CMD_PAGEPROG.

30.2.2 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k +
218) the page layout of 8K page is (8K + 448).

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

222 Freescale Semiconductor, Inc.

http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

30.2.3 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are
found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

30.2.4 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved. The driver decides if bad block
marks should be moved if there is no NAND control block. Then, to prevent another
move of bad block marks, the driver writes the default NCB to the Flash.

The following functions that deal with bad block handling are grouped together in the
gpmi-nfc-mil.c file:

mil_block_bad
mil_scan_bbt

30.3 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/gpmi-nfc directory.

The following files are included in the NAND driver:

gpmi-nfc.c
hal-mx50.c
hal-mxs.c
gpmi-nfc.h
gpmi-regs.h
bch-regs.h
gpmi-regs-mx50.h
bch-regs-mx50.h

Chapter 30 NAND GPMI Flash Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 223

30.3.1 Menu Configuration Options
• CONFIG_IMX_HAVE_PLATFORM_GPMI_NFC = [Y]
• CONFIG_MTD_NAND_GPMI_NFC = [Y | M]

In addition, these MTD options must be enabled:

• CONFIG_MTD_NAND = [y | m]
• CONFIG_MTD = y
• CONFIG_MTD_PARTITIONS = y
• CONFIG_MTD_CHAR = y
• CONFIG_MTD_BLOCK = y

In addition, these UBI options must be enabled:

• CONFIG_MTD_UBI=y
• CONFIG_MTD_UBI_WL_THRESHOLD=4096
• CONFIG_MTD_UBI_BEB_RESERVE=1
• CONFIG_UBIFS_FS=y
• CONFIG_UBIFS_FS_LZO=y
• CONFIG_UBIFS_FS_ZLIB=y

Source Code Structure

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

224 Freescale Semiconductor, Inc.

Chapter 31
Inter-IC (I2C) Driver

31.1 Introduction
I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The I2C driver for Linux has two parts:

• I2C bus driver-low level interface that is used to talk to the I2C bus
• I2C chip driver-acts as an interface between other device drivers and the I2C bus

driver

31.1.1 I2C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user
space.

The standard Linux kernel contains a core I2C module that is used by the chip driver to
access the I2C bus driver to transfer data over the I2C bus. The chip driver uses a
standard kernel space API that is provided in the Linux kernel to access the core I2C
module. The standard I2C kernel functions are documented in the files available under
Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

• Compatible with the I2C bus standard
• Bit rates up to 400 Kbps
• Starts and stops signal generation/detection
• Acknowledge bit generation/detection
• Interrupt-driven, byte-by-byte data transfer
• Standard I2C master mode

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 225

31.1.2 I2C Device Driver Overview

The I2C device driver implements all the Linux I2C data structures that are required to
communicate with the I2C bus driver. It exposes a custom kernel space API to the other
device drivers to transfer data to the device that is connected to the I2C bus. Internally,
these API functions use the standard I2C kernel space API to call the I2C core module.
The I2C core module looks up the I2C bus driver and calls the appropriate function in the
I2C bus driver to transfer data. This driver provides the following functions to other
device drivers:

• Read function to read the device registers
• Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

31.1.3 Hardware Operation

The I2C module provides the functionality of a standard I2C master and slave.

It is designed to be compatible with the standard Philips I2C bus protocol. The module
supports up to 64 different clock frequencies that can be programmed by setting a value
to the Frequency Divider Register (IFDR). It also generates an interrupt when one of the
following occurs:

• One byte transfer is completed
• Address is received that matches its own specific address in slave-receive mode
• Arbitration is lost

31.2 Software Operation
The I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

226 Freescale Semiconductor, Inc.

31.2.1 I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important
field in this structure is struct i2c_algorithm *algo. This field is a pointer to the
i2c_algorithm structure that describes how data is transferred over the I2C bus. The
algorithm structure contains a pointer to a function that is called whenever the I2C chip
driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one I2C module. If so, the driver registers
separate i2c_adapter structures for each I2C module with the I2C core. These adapters are
unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end
of a data transmission before transmitting the next byte. It times out and returns an error
if the transfer complete signal is not received. Because the I2C bus driver uses wait
queues for its operation, other device drivers should be careful not to call the I2C API
methods from an interrupt mode.

31.2.2 I2C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver,
describes the I2C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value I2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. The attach_adapter
callback function is called whenever a new I2C bus driver is loaded in the system. When
the I2C bus driver is loaded, this driver stores the i2c_adapter structure associated with
this bus driver so that it can use the appropriate methods to transfer data.

31.3 Driver Features
The I2C driver supports the following features:

• I2C communication protocol
• I2C master mode of operation

NOTE
The I2C driver does not support the I2C slave mode of
operation.

Chapter 31 Inter-IC (I2C) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 227

31.3.1 Source Code Structure

Table below shows the I2C bus driver source files available in the directory:

<ltib_dir>/rpm/BUILD/linux/drivers/i2c/busses.

Table 31-1. I2C Bus Driver Files

File Description

i2c-imx.c I2C bus driver source file

31.3.2 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./ltib -c
command when located in the <ltib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

Device Drivers > I2C support > I2C Hardware Bus support > IMX I2C interface.

31.3.3 Programming Interface

The I2C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the I2C bus.

For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

31.3.4 Interrupt Requirements

The I2C module generates many kinds of interrupts.

The highest interrupt rate is associated with the transfer complete interrupt as shown in
table below.

Table 31-2. I2C Interrupt Requirements

Parameter Equation Typical Best Case

Rate Transfer Bit Rate/8 25,000/sec 50,000/sec

Latency 8/Transfer Bit Rate 40 Î¼s 20 Î¼s

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

228 Freescale Semiconductor, Inc.

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a
baud rate of 400 Kbps (the maximum supported by the I2C interface).

Chapter 31 Inter-IC (I2C) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 229

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

230 Freescale Semiconductor, Inc.

Chapter 32
Enhanced Configurable Serial Peripheral Interface
(ECSPI) Driver

32.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.

It supports the following features:

• Interrupt-driven transmit/receive of bytes
• Multiple master controller interface
• Multiple slaves select
• Multi-client requests

32.1.1 Hardware Operation

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications.

Each ECSPI is equipped with a data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master
or slave devices.

The primary features of the ECSPI includes:

• Master/slave-configurable
• Four chip select signals to support multiple peripherals
• Up to 32-bit programmable data transfer
• 64 x 32-bit FIFO for both transmit and receive data
• Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 231

32.2 Software Operation
The following sections describe the ECSPI software operation.

32.2.1 SPI Sub-System in Linux

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. Figure below shows the block diagram for SPI
subsystem in Linux.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR
mtd driver

Client #2 driver
.... Client #3 driver

SPI Subsystem

ECSPI Hardware

SPI-NOR Flash Client #2 Client #3....

Figure 32-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. Figure below shows how the different SPI drivers are
layered in the SPI subsystem.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

232 Freescale Semiconductor, Inc.

SPI client Driver

SPI Core Driver

ECSPI Controller Driver

ECSPI Controller

SPI Slave
(SPI-NOR Flash)

Client Driver Interface

Controller Driver Interace

FSL ECSPI driver
(spi_imx.c)

SPI Bus Interface

Electrical Interface

SPI slave driver

SPI core driver

ECSPI host
controller driver

SPI slave device

Figure 32-2. Layering of SPI Drivers in SPI Subsystem

32.2.2 Software Limitations

The ECSPI driver limitations are as follows:

• Does not currently have SPI slave logic implementation
• Does not support a single client connected to multiple masters
• Does not currently implement the user space interface with the help of the device

node entry but supports sysfs interface

32.2.3 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

• Init function spi_imx_init() registers the device_driver structure.
• Probe function spi_imx_probe() performs initialization and registration of the SPI

device specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/O pins, requests for IRQ
and resets the hardware.

• Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

• SPI transfer function spi_imx_transfer() handles data transfers operations.
• SPI setup function spi_imx_setup() initializes the current SPI device.
• SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed

and an interrupt is generated.

Chapter 32 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 233

32.2.4 ECSPI Synchronous Operation

Figure below shows how the ECSPI provides synchronous read/write operations.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

234 Freescale Semiconductor, Inc.

Client Driver SPI Core
 Driver

SPI Controller
 Driver

ECSPI
Hardware

spi_read/write

spi transfer
spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready_intr

spi_getRxData

callback after

transfer completionreturn

Figure 32-3. ECSPI Synchronous Operation

Chapter 32 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 235

32.3 Driver Features
• Implements each of the functions required by a ECSPI module to interface to Linux
• Multiple SPI master controllers
• Multi-client synchronous requests

32.3.1 Source Code Structure

Table below shows the source files available in the devices directory:

<ltib_dir>/rpm/BUILD/linux/drivers/spi/

Table 32-1. CSPI Driver Files

File Description

spi_imx.c SPI Master Controller driver

32.3.2 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the ./ltib -c
command when located in the <ltib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

• CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:

• Device Drivers > SPI Support.
• CONFIG_BITBANG is the Library code that is automatically selected by drivers

that need it. SPI_IMX selects it. In menuconfig, this option is available under:
• Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.

• CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:

• Device Drivers > SPI Support > Freescale i.MX SPI controllers.

32.3.3 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

236 Freescale Semiconductor, Inc.

For more information, see the Linux document generated from build: make htmldocs.

32.3.4 Interrupt Requirements

The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 32-2. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case

BaudRate/ Transfer Length (BaudRate/(TransferLength))
* (1/Rxtl)

31250 1500000

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

Chapter 32 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 237

Driver Features

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

238 Freescale Semiconductor, Inc.

Chapter 33
FlexCAN Driver

33.1 Driver Overview
FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

33.1.1 Hardware Operation

For the information on hardware operations, see the i.MX 6 Multimedia Applications
Processor Reference Manual.

33.1.2 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

33.1.3 Source Code Structure

Table below shows the driver source file available in the directory,

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 239

Table 33-1. FlexCAN Driver Files

File Description

33.1.4 Linux Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the ./ltib -c command when located in the <ltib dir>. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

• CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this
option is available under

Networking > CAN bus subsystem support.

• CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this
option is available under

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with
CAN-ID filtering).

• CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol
(with content filtering).

• CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in
Ethernet interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local
CAN Interface (vcan).

• CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to
the system log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices
debugging messages.

• CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale
FlexCAN.

Driver Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

240 Freescale Semiconductor, Inc.

Chapter 34
Media Local Bus Driver

34.1 Introduction
MediaLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST
Network data or to communicate with other applications with minimum effort. MediaLB
supports all the MOST Network data transport methods: synchronous stream data,
asynchronous packet data, and control message data. MediaLB also supports an
isochronous data transport method. For detailed information about the MediaLB, see the
Media Local Bus Specification.

34.1.1 MLB Device Module

The MediaLB module implements the Physical Layer and Link Layer of the MediaLB
specification, interfacing the i.MX to the MediaLB controller.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 241

Figure 34-1. MLB Device Top-Level Block Diagram

The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It
does not implement MediaLB controller functionality. All MediaLB devices support a set
of physical channels for sending data over the MediaLB. Each physical channel is 4 bytes
in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction
(transmit or receive).

The MLB provides support for up to 16 logical channels and up to 31 physical channels
with a maximum of 124 bytes of data per frame. Each logical channel is referenced using
an unique channel address and represents a unidirectional data path between a MediaLB
device transmitting the data and the MediaLB device(s) receiving the data.

34.1.2 Supported Feature
• Synchronous, asynchronous, control and isochronous channel.
• Up to 16 logical channels and 31 physical channels running at a maximum speed of

1024Fs
• Transmission of commands and data and reception of receive status when

functioning as the transmitting device associated with a logical channel address

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

242 Freescale Semiconductor, Inc.

• Reception of commands and data and transmission as receive status responses when
functioning as the receiving device associated with a logical channel address

• MediaLB lock detection
• System channel command handling

34.1.3 Modes of Operation
• Normal mode. The MediaLB Device dictates two particular methods:

• Ping-Pong Buffering mode
• Circular Buffering mode (only used on synchronous type transfer)

• Loop-Back test mode

34.1.4 MLB Driver Overview

The MLB driver is designed as a common linux character driver. It implements one
asynchronous and one control channel device with Ping-Pong buffering operation mode.
The supported frame rates are 256, 512, and 1024Fs. The MLB driver uses common read/
write interfaces to receive/send packets and uses the ioctl interface to configure the MLB
device module.

34.2 MLB Driver
Functionality of the MLB driver is described in supported features, MLB driver
architecture, and software operation.

34.2.1 Supported Features
• 256Fs, 512Fs and 1024Fs frame rates
• Asynchronous and control channel types
• The following configurations to MLB device module:

• Frame rate
• Device address
• Channel address

• MLB channel exception get interface. All the channel exceptions are sent and
handled by the application.

Chapter 34 Media Local Bus Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 243

34.2.2 MLB Driver Architecture

The MLB driver is a common linux character driver and the architecture is shown in
figure below.

Figure 34-2. MLB Driver Architecture Diagram

The MLB driver creates two minor devices, one for control tx/rx channel and the other
for asynchronous. Their device files are /dev/ctrl and /dev/async. Each minor device has
the same interfaces, and handle both Tx and Rx operation. The following description is
for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission
and reception between module and IRAM is handled by the MLB module DMA. The
driver is responsible for configuring the buffer start and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a
packet arrives, the MLB module puts the received packet into the IRAM Rx buffer, and
notifies the driver by interrupt. The driver then copy the packet from the IRAM to one
ring buffer node indicated by the write position, and updates the write position with the
next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read completed, it
updates the read position with the next available buffer node. There is no received packet
in the ring buffer when the read and write position is the same.

MLB Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

244 Freescale Semiconductor, Inc.

For transmission, the driver writes the packet given by the writer application into the
IRAM Tx buffer, updates the Tx status and sets MLB device module Tx buffer pointer to
start transmission. After transmission completes, the driver is notified by interrupt and
updates the Tx status to accept the next packet from the application.

The driver supports NON BLOCK I/O. User applications can poll to check if there are
packets or exception events to read, and also they can check if a packet can be sent or not.
If there are exception events, the application can call ioctl to get the event. The ioctl also
provides the interface to configure the frame rate, device address and channel address.

34.2.3 Software Operation

The MLB driver provides a common interface to application.

• Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only
one packet can be read or written at once. The minimum read length must be greater
or equal to the received packet length, meanwhile the write length must be shorter
than 1024Bytes.

• Polling-The MLB driver provide polling interface which polls for three status,
application can use select to get current I/O status:

• Packet available for read (ready to read)
• Driver is ready to send next packet (ready to write)
• Exception event comes (ready to read)

• ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS

Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the i.MX35.

MLB_SET_DEVADDR

Argument type: unsigned char

Set MLB device address, which is used by the system channel MlbScan command.

MLB_CHAN_SETADDR

Argument type: unsigned int

Chapter 34 Media Local Bus Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 245

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx
channel address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1]

MLB_CHAN_STARTUP

Startup the corresponding type of channel for transmit and reception.

MLB_CHAN_SHUTDOWN

Shutdown the corresponding type of channel.

MLB_CHAN_GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of
enumeration:

MLB_EVT_TX_PROTO_ERR_CUR
MLB_EVT_TX_BRK_DETECT_CUR
MLB_EVT_RX_PROTO_ERR_CUR
MLB_EVT_RX_BRK_DETECT_CUR

34.3 Driver Files
Table below lists the source file associated with the MLB driver that are found in the
directory <ltib_dir>/rpm/BUILD/linux/drivers/mxc/mlb/.

Table 34-1. MLB Driver Source File List

File Description

mxc_mlb.c Source file for MLB driver

include/linux/mxc_mlb.h Include file for MLB driver

34.4 Menu Configuration Options
To get to the MediaLB configuration, use the command ./ltib -c when located in the <ltib
dir>. In the screen, select Configure Kernel, exit, and a new screen appears. This option
is available under:

• Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB
support.

Driver Files

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

246 Freescale Semiconductor, Inc.

Chapter 35
ARC USB Driver

35.1 Introduction
The universal serial bus (USB) driver implements a standard Linux driver interface to the
ARC USB-HS OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-
peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This
USB driver has the following features:

• High speed OTG core supported
• Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)
• Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers

which include ethernet and serial support
• Embedded DMA controller

35.1.1 Architectural Overview

The USB host system is composed of a number of hardware and software layers.

Figure below shows a conceptual block diagram of the building block layers in a host
system that support USB 2.0.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 247

Figure 35-1. USB Block Diagram

35.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at http://www.usb.org/developers/docs/

35.2.1 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols.

For the USB host, it only implements the hardware specified initialization functions. For
the USB peripheral, it implements the gadget framework.

static struct usb_ep_ops fsl_ep_ops = {
 .enable = fsl_ep_enable,
 .disable = fsl_ep_disable,
 .alloc_request = fsl_alloc_request,
 .free_request = fsl_free_request,

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

248 Freescale Semiconductor, Inc.

 .queue = fsl_ep_queue,
 .dequeue = fsl_ep_dequeue,
 .set_halt = fsl_ep_set_halt,
 .fifo_status = arcotg_fifo_status,
 .fifo_flush = fsl_ep_fifo_flush, /* flush
fifo */
 };
static struct usb_gadget_ops fsl_gadget_ops = {
 .get_frame = fsl_get_frame,
 .wakeup = fsl_wakeup,
/* .set_selfpowered = fsl_set_selfpowered, */ /*
Always selfpowered */
 .vbus_session = fsl_vbus_session,
 .vbus_draw = fsl_vbus_draw,
 .pullup = fsl_pullup,
 };

• fsl_ep_enable-configures an endpoint making it usable
• fsl_ep_disable-specifies an endpoint is no longer usable
• fsl_alloc_request-allocates a request object to use with this endpoint
• fsl_free_request-frees a request object
• arcotg_ep_queue-queues (submits) an I/O request to an endpoint
• arcotg_ep_dequeue-dequeues (cancels, unlinks) an I/O request from an endpoint
• arcotg_ep_set_halt-sets the endpoint halt feature
• arcotg_fifo_status-get the total number of bytes to be moved with this transfer

descriptor

For OTG, ID dynamic switch host/device modes are supported. Full OTG functions are
temporarily not supported.

35.2.2 Source Code Structure

Table below shows the source files available in the source directory, <ltib_dir>/rpm/
BUILD/linux/drivers/usb.

Table 35-1. USB Driver Files

File Description

host/ehci-hcd.c Host driver source file

host/ehci-arc.c Host driver source file

host/ehci-mem-iram.c Host driver source file for IRAM support

host/ehci-hub.c Hub driver source file

host/ehci-mem.c Memory management for host driver data structures

host/ehci-q.c EHCI host queue manipulation

host/ehci-q-iram.c Host driver source file for IRAM support

gadget/arcotg_udc.c Peripheral driver source file

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file

Table continues on the next page...

Chapter 35 ARC USB Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 249

Table 35-1. USB Driver Files (continued)

File Description

otg/fsl_otg.h OTG driver header file

otg/otg_fsm.c OTG FSM implement source file

otg/otg_fsm.h OTG FSM header file

gadget/fsl_updater.c FSL manufacture tool USB char driver source file

gadget/fsl_updater.h FSL manufacture tool USB char driver header file

Table below shows the platform related source files.

Table 35-2. USB Platform Source Files

File Description

arch/arm/plat-mxc/include/mach/arc_otg.h USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table below shows the platform-related source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/

Table 35-3. USB Platform Header Files

File Description

usb_dr.c Platform-related initialization

usb_h1.c Platform-related initialization

usb_h2.c Platform-related initialization

usb_h3.c Platform-related initialization

Table below shows the common platform source files in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc.

Table 35-4. USB Common Platform Files

File Description

isp1504xc.c ULPI PHY driver (USB3317 uses the same driver as ISP1504)

utmixc.c Internal UTMI transceiver driver

usb_hsic_xcvr.c HSIC featured phy's interface

usb_common.c Common platform related part of USB driver

usb_wakeup.c Handle USB wakeup events

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

250 Freescale Semiconductor, Inc.

35.2.3 Menu Configuration Options

To get to the Linux kernel configuration options available for this module, use the ./ltib -c
command when located in the <ltib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

• CONFIG_USB-Build support for USB
• CONFIG_USB_EHCI_HCD-Build support for USB host driver. In menuconfig, this

option is available under Device drivers > USB support > EHCI HCD (USB 2.0)
support.

By default, this option is Y.

• CONFIG_USB_EHCI_ARC-Build support for selecting the ARC EHCI host. In
menuconfig, this option is available under Device drivers > USB support > Support
for Freescale controller.

By default, this option is Y.

• CONFIG_USB_EHCI_ARC_OTG-Build support for selecting the ARC EHCI OTG
host. In menuconfig, this option is available under

Device drivers > USB support > EHCI HCD (USB 2.0) support > Support for DR
host port on Freescale controller.

By default, this option is Y.

• CONFIG_USB_EHCI_ARC_HSIC Freescale HSIC USB Host Controller

By default, this option is N.

• CONFIG_USB_EHCI_ROOT_HUB_TT-Some EHCI chips have vendor-specific
extensions to integrate transaction translators, so that no OHCI or UHCI companion
controller is needed. In menuconfig this option is available under

Device drivers > USB support > Root Hub Transaction Translators.

By default, this option is Y selected by USB_EHCI_ARC && USB_EHCI_HCD.

• CONFIG_USB_STORAGE-Build support for USB mass storage devices. In
menuconfig this option is available under

Device drivers > USB support > USB Mass Storage support.

By default, this option is Y.

• CONFIG_USB_HID-Build support for all USB HID devices. In menuconfig this
option is available under

Chapter 35 ARC USB Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 251

Device drivers > HID Devices > USB Human Interface Device (full HID) support.

By default, this option is Y.

• CONFIG_USB_GADGET-Build support for USB gadget. In menuconfig, this option
is available under

Device drivers > USB support > USB Gadget Support.

By default, this option is M.

• CONFIG_USB_GADGET_ARC-Build support for ARC USB gadget. In
menuconfig, this option is available under

Device drivers > USB support > USB Gadget Support > USB Peripheral Controller
(Freescale USB Device Controller).

By default, this option is Y.

• CONFIG_IMX_USB_CHARGER Freescale i.MX 6 USB Charger Detection

By default, this option is N.

• CONFIG_USB_OTG-OTG Support, support dual role with ID pin detection.

By default, this option is Y.

• CONFIG_MXC_OTG-USB OTG pin detect support for Freescale USB OTG
Controller

By default, this option is Y.

• CONFIG_USB_ETH-Build support for Ethernet gadget. In menuconfig, this option
is available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support).

By default, this option is M.

• CONFIG_USB_ETH_RNDIS-Build support for Ethernet RNDIS protocol. In
menuconfig, this option is available under

Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support) > RNDIS support.

By default, this option is Y.

• CONFIG_USB_FILE_STORAGE-Build support for Mass Storage gadget. In
menuconfig, this option is available under

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

252 Freescale Semiconductor, Inc.

Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.

By default, this option is M.

• CONFIG_USB_G_SERIAL-Build support for ACM gadget. In menuconfig, this
option is available under

Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC
ACM support).

By default, this option is M.

35.2.4 Programming Interface

This driver implements all the functions that are required by the USB bus protocol to
interface with the i.MX USB ports.

See the BSP API document, for more information.

35.3 System WakeUp
Both host and device connect/disconnect event can be system wakeup source, as well the
device remote wakeup.

But all the wakeup functions depend on the USB PHY power supply, including 1p1, 2p5,
3p3, no power supply, all the wakeup function behavior will be unpredictable.

For host remote wake feature, there is a limitation that our system clock needs a short
time to be stable after resume, if the resume signal sent by the connected device only last
very short time (less than the time need to make clock stable), the remote wakeup may
fail. At such case, we should not turn off some clocks to decrease the time needs to be
stable to fix such issue.

35.3.1 USB Wakeup usage

USB wakeup usage is outlined in three procedures: how to enable USB wakeup system,
what kinds of wakeup events USB supports, and how to close USB child device power.

Chapter 35 ARC USB Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 253

35.3.2 How to Enable USB WakeUp System Ability

For otg port:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

For device-only port:

echo enabled > /sys/devices/platform/fsl-usb2-udc/power/wakeup

For host-only port:

echo enabled > /sys/devices/platform/fsl-ehci.x/power/wakeup
(x is the port num)

For USB child device:

echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

35.3.3 WakeUp Events Supported by USB

USBOTG port is used as an example.

Device mode wakeup:

connect wakeup: when USB line connects to usb port, the other port is connected to PC
(Wakeup signal: vbus change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

Host mode wakeup:

connect wakeup: when USB device connects to host port (Wakeup signal: ID/(dm/dp)
change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

disconnect wakeup: when USB device disconnects to host port (Wakeup signal: ID/(dm/
dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

remote wakeup: press USB device (i.e. press USB key on the USB keyboard) when USB
device connects to host port (Wakeup signal: ID/(dm/dp) change):

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE
For the hub on board, it is necessary to enable hub's wakeup
first. For remote wakeup, it is necessary to perform the three
steps outlined below:

System WakeUp

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

254 Freescale Semiconductor, Inc.

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup (enable the roothub's wakeup)
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup (enable the second level hub's wakeup)
(1-1 is the hub name)
echo enabled > /sys/bus/usb/devices/1-1.1/power/wakeup (enable the USB device wakeup, that
device connects at second level hub)
(1-1.1 is the USB device name)

35.3.4 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at usb device)

Chapter 35 ARC USB Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 255

System WakeUp

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

256 Freescale Semiconductor, Inc.

Chapter 36
i.MX 6 PCI Express Root Complex Driver

36.1 Introduction
PCI Express hardware module, contained in i.MX 6 SoC, can either be configured to act
as a Root Complex or a PCIe Endpoint.

This chapter describes the PCI Express Root Complex implementation on i.MX 6Dual/
6Quad/6Solo/6DualLite SOC's families.

It also describes the drivers that need to be configured and operated on the i.MX 6 PCI
Express device as Root Complex.

36.1.1 PCIe

PCI Express (PCIe) is Third Generation I/O Interconnect, targeting low cost, high
volume, multi-platform interconnection usages. It has the concepts with earlier PCI and
PCI-X and offers backwards compatibility for existing PCI software with following
differences:

• PCIe is a point-to-point interconnect
• Serial link between devices
• Packet based communication
• Scalable performance via aggregated Lanes from X1 to X16
• Need PCIe switch to have connection between more than two PCIe devices

36.1.2 Terminology and Conventions

Following terminologies and conventions are used in this document:

• Bridge

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 257

A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express
Port with an internal component interconnect or with another PCI/PCI-X bus
segment or PCI Express Port.

• Downstream
• 1. The relative position of an interconnect/System Element (Port/component)

that is farther from the Root Complex. The Ports on a Switch that are not the
Upstream Port are Downstream Ports. All Ports on a Root Complex are
Downstream Ports. The Downstream component on a Link is the component
farther from the Root Complex.

• 2. A direction of information flow where the information is flowing away from
the Root Complex.

• Endpoint

One of several defined System Elements. A Function that has a Type 00h
Configuration Space header.

• Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and
resources, such as Memory (RAM) that can be shared across multiple PCIe nodes
connected through a Root Complex.

• Lane

A set of differential signal pairs, one pair for transmission and one pair for reception.

• Link

The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex
communications path between two components.

• PCIe Fabric

A topology comprised of various PCI Express nodes, also referred as devices. A
device in the fabric can be Root Complex, Endpoint, PCIe-PCI/PCI-X Bridge or a
Switch.

• Port
• 1. Logically, an interface between a component and a PCI Express Link.
• 2. Physically, a group of Transmitters and Receivers located on the same chip

that define a Link.
• Root Complex

RC A defined System Element that includes a Host Bridge, zero or more Root
Complex Integrated Endpoints, zero or more Root Complex Event Collectors, and
one or more Root Ports

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

258 Freescale Semiconductor, Inc.

• Root Port

A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through
an associated virtual PCI-PCI Bridge.

• Upstream
• 1. The relative position of an interconnect/System Element (Port/component)

that is closer to the Root Complex. The Port on a Switch that is closest
topologically to the Root Complex is the Upstream Port. The Port on a
component that contains only Endpoint or Bridge Functions is an Upstream Port.
The Upstream component on a Link is the component closer to the Root
Complex.

• http://intellinuxwireless.org/?n=Info

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'.
All PCIe Endpoint ports (including termination points for bridges) and Switch ports,
which are closer to RC are called Upstream Ports on that device. A Upstream Flow is the
communication moving towards RC.

36.1.3 PCIe Topology on i.MX 6 in PCIe RC Mode

There is one PCIe port on the i.MX 6.

The following figure describes the diagram of the PCIe RC port on i.MX 6.

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 259

http://intellinuxwireless.org/?n=Info

Figure 36-1. diagram of the PCIe RC port on i.MX 6

PCI Enumeration Mapping

Since PCI Express is point to point topology, to maintain compatibility with legacy PCI
Bus - Device notion used for Software Enumeration, we introduce following concepts
which allow identifying various nodes and their internals (e.g., PCIe Switches) in terms
of PCI devices/functions:

• Host Bridge: A bridge, integrated into RC to have PCI compatible connection to
Host. The PCI side of this bridge is Bus #0 always. This means, the device on this
bus will be the host itself.

• Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is
treated as a virtual PCI-PCI bridge. This means each port has a primary and
secondary PCI bus and the downstream is mapped into the remote configuration
space.

• Root port associated virtual bridge has Bus #0 on the primary side with secondary
bus on the downstream.

• Each PCIe Switch is viewed as collection of as many virtual PCI-PCI bridges as
number of downstream ports, connected to a virtual PCI bus which is actually
secondary bus of another PCI-PCI bridge forming the upstream port of the switch.

• The upstream port of each EP can either be part of the secondary bus segment of
virtual PCI-PCI Bridge representing downstream port of a switch or of the root port.

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

260 Freescale Semiconductor, Inc.

36.1.4 Features

Listed below are the various features supported by i.MX 6 as a PCI Express Root
Complex driver.

• Express Base Specification Revision 2.0 compliant
• Gen1 operation with x1 link supporting 5 GT/s raw transfer rate in single direction
• Support Legacy Interrupts (INTx), and MSI
• Configurable Max_Payload_Size size (128 bytes to 4 KB)
• 4-KB maximum Request size
• It fits into Linux PCI Bus framework to provide PCI compatible software

enumeration support
• In addition, it provides interface to Endpoint Drivers to access the respective devices

detected downstream.
• The same interface can be used by the PCI Express Port Bus Driver framework in

Linux to perform AER, ASP etc handling
• Interrupt handling facility for EP drivers either as Legacy Interrupts (INTx).
• Access to EP I/O BARs through generic I/O accessories in Linux PCI subsystem.
• Seamless handling of PCIe errors

NOTE
Out of the above, MSI, I/O access, Port Bus Driver
integration are currently incomplete.

36.2 Linux PCI Subsystem and RC driver
In Linux, the PCI implementation can roughly be divided into following main
components: PCI BIOS architecture specific Linux implementation, Host Controller (RC)
Module, and Core.

• PCI BIOS Architecture specific Linux implementation to kick off PCI bus
initialization. It interfaces with PCI Host Controller code as well as the PCI Core to
perform bus enumeration and allocation of resources such as memory and interrupts.
The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers
(referred as Slave Drivers). PCI can take control of them using the facilities provided
by PCI Core. It is possible to skip resource allocation (if they were assigned before
Linux was booted, for example PC scenario).

• Host Controller (RC) Module handles hardware (SoC + Board) specific initialization
and configuration and it invokes PCI BIOS. It should provide callback functions for

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 261

BIOS as well as PCI Core, which will be called during PCI system initialization and
accessing PCI bus for configuration cycles. It provides resources information for
available memory/IO space, INTx interrupt lines, MSI. It should also facilitate IO
space access (as supported) through in _x_ () out _x_ () You may need to provide
indirect memory access (if supported by h/w) through read _x_ () write _x_ ()

• Core creates and initializes the data structure tree for bus devices as well as bridges
in the system, handles bus/device numberings, creates device entries and proc/sysfs
information, provides services for BIOS and slave drivers and provides hot plug
support (optional/as supported by h/w). It targets (EP) driver interface query and
initializes corresponding devices found during enumeration. It also provides MSI
interrupt handling framework and PCI express port bus support. It provides Hot-Plug
support (if supported), advanced error reporting support, power management event
support, and virtual Channel support to run on PCI express ports (if supported).

36.2.1 RC driver source files

The driver files are present at the following path relative to extracted kernel source
directory.

arch/arm/mach-mx6/pcie.c (RC driver source)

arch/arm/mach-mx6/include/mach/pci.h (Define the platform data structure for RC
driver)

36.2.2 Kernel configurations

Root Complex is not supported by the default kernel configurations on i.MX 6 boards.

To set the default configuration, execute the following command as follows:

make CROSS_COMPILE=arm-none-linux-gnueabi- ARCH=imx6_defconfig

Configure the Root Complex to be built in:

Prompt: PCI Express support
Defined at arch/arm/mach-mx6/Kconfig:171
Depends on: ARCH_MXC [=y] && ARCH_MX6 [=y]
Location:
-> System Type
-> Freescale MXC Implementations
Selects: PCI [=y]

NOTE
PCI Express support can't be built as a module.

Linux PCI Subsystem and RC driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

262 Freescale Semiconductor, Inc.

36.3 System Resource: Memory Layout

Figure 36-2.

• The upper 16Kbytes PCIe host configuration space.
• This memory segment is used to map the configuration space of PCIe RC. SW

can access PCIe RC core configuration space through the DBI interface.
• PCIe device configuration space.

• Used to map the configuration spaces of PCIe EP devices that are inserted to the
RC downstream port.

36.3.1 System Resource: Interrupt lines

i.MX 6 Root Complex driver uses interrupt line 155 for legacy interrupts.

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 263

36.4 Using PCIe Endpoint and running Tests
Perform the following steps to use PCIe endpoint and run test:

Configure the driver according to PCIe Endpoint device.

Run "make menuconfig" after run "make ARCH=arm imx6_defconfig".

Kernel configuration:
* -> System Type
 -> Freescale MXC Implementations
Select the PCI Express support.

Implement the following configurations according to the PCIe EP devices:

• PCIe to USB card driver

Symbol: USB_XHCI_HCD [=y]
Type : tristate
Prompt: xHCI HCD (USB 3.0) support (EXPERIMENTAL)
 Defined at drivers/usb/host/Kconfig:20
 Depends on: USB_SUPPORT [=y] && USB [=y] && PCI [=y] && EXPERIMENTAL [=y]
 Location:
 -> Device Drivers
 -> USB support (USB_SUPPORT [=y])

• Intel CT gigabit network card driver

Symbol: E1000E [=y]
Type : tristate
Prompt: Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support
 Defined at drivers/net/Kconfig:2139
 Depends on: NETDEVICES [=y] && NETDEV_1000 [=y] && PCI [=y] && (!SPARC32 || BROKEN [=n])
 Location:
 -> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet (1000 Mbit) (NETDEV_1000 [=y])

• Generic IEEE 802.11 Networking Stack (mac80211) used by WIFI devices

Symbol: MAC80211 [=y]
Type : tristate
Prompt: Generic IEEE 802.11 Networking Stack (mac80211)
 Defined at net/mac80211/Kconfig:1
 Depends on: NET [=y] && WIRELESS [=y] && CFG80211 [=y]
 Location:
 -> Networking support (NET [=y])
 -> Wireless (WIRELESS [=y])

• Intel iwl4965 or iwl6300 card driver

Symbol: IWL4965
[=n]

 Type :
tristate

 Prompt: Intel Wireless WiFi 4965AGN
(iwl4965)

 Defined at drivers/net/wireless/iwlegacy/Kconfig:

Using PCIe Endpoint and running Tests

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

264 Freescale Semiconductor, Inc.

65
 Depends on: NETDEVICES [=y] && WLAN [=y] && PCI [=n] && MAC80211
[=n]

Location:

 -> Device
Drivers

 -> Network device support (NETDEVICES
[=y])
 -> Wireless LAN (WLAN [=y])
 Selects: IWLWIFI_LEGACY [=n]

To enable the wifi driver, we need to enable one of the two options: IWL4965 or
IWLAGN. You must choose one, but not both.

CONFIG_IWLAGN:

Select to build the driver supporting the:
Intel Wireless WiFi Link Next-Gen AGN

This option enables support with the following hardware:

 Intel Wireless WiFi Link 6250AGN Adapter
 Intel 6000 Series Wi-Fi Adapters (6200AGN and 6300AGN)
 Intel WiFi Link 1000BGN
 Intel Wireless WiFi 5150AGN
 Intel Wireless WiFi 5100AGN, 5300AGN, and 5350AGN
 Intel 6005 Series Wi-Fi Adapters
 Intel 6030 Series Wi-Fi Adapters
 Intel Wireless WiFi Link 6150BGN 2 Adapter
 Intel 100 Series Wi-Fi Adapters (100BGN and 130BGN)
 Intel 2000 Series Wi-Fi Adapters

• WIFI firmware configurations:

In order to install the mandatory required firmware by Intel IWL WIFI devices, please
refer to the following link for guidance http://intellinuxwireless.org/?n=Info

36.4.1 Ensuring PCIe System Initialization

Run 'lspci' after login the consol. There should be the following similar message if the
PCIe link is established.

root@freescale ~$ lspci

00:00.0 PCI bridge: Unknown device 16c3:abcd (rev 01)

01:00.0 Network controller: Intel Corporation Unknown device 4237

36.4.2 Tests

Run different tests according the different PCIe EP devices.

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 265

http://intellinuxwireless.org/?n=Info

• Intel Iwl6300 mini-PCIe x1 WIFI card
• Iperf, netperf
• Overnight different packet ping

• Intel CT gigabit standard PCIe X1 network card
• NFS mount/data IO through NFS
• Iperf, netperf
• Overnight different packet ping

• PCIe to USB3.0 standard PCIe X1 card
• General tests

• * Block storage device, recognization,
• * Partition creation, format and so on.
• * Hundreds MB data read/write by copy command

• Stress tests
• ./iozone -a -n 2000m -g 2000m -i 0 -i 1 -f /mnt/src/iozone.tmpfile -Rb ./iozone

36.4.3 Known Issues
• You can connect an external WIFI antenna to enlarge the WIFI signal strength if the

WIFI card tests cannot work properly.

36.5 i.MX 6Quad SD PCIe RC/EP Validation System

36.5.1 Hardware Setup

There are two i.MX 6Quad SABRE-SD boards: one is used as PCIe RC; and the other is
used as PCIe EP. They are connected by two mini_PCIe-to-standard_PCIe adaptors, two
PEX cable adaptors, and then one PCIe cable.

36.5.2 Software Configurations

When building the RC image, make sure that:

 CONFIG_IMX_PCIE=y
 # CONFIG_IMX_PCIE_EP_MODE_IN_EP_RC_SYS is not set
 CONFIG_IMX_PCIE_RC_MODE_IN_EP_RC_SYS=y

When building the EP image, make sure that:

i.MX 6Quad SD PCIe RC/EP Validation System

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

266 Freescale Semiconductor, Inc.

 CONFIG_IMX_PCIE=y
 CONFIG_IMX_PCIE_EP_MODE_IN_EP_RC_SYS=y
 # CONFIG_IMX_PCIE_RC_MODE_IN_EP_RC_SYS is not set

36.5.3 Features

Set up the link between RC and EP by their stand-alone 125MHz running internally.

In the EP system, EP can access the reserved DDR memory (default address:
0x40000000) of the PCIe RC system by the interconnection between PCIe EP and PCIe
RC.

NOTE
• The layout of the 1G DDR memory on the SD board is

0x1000_0000-0x4FFF_FFFF). Use mem=768M in the
kernel command line to reserve the
0x4000_0000-0x4FFF_FFFF DDR memory space for the
EP access test.

• Boot up the PCIe EP system, and then boot up the PCIe RC
system.

• Example of the RC kernel command line:

noinitrd console=ttymxc0,115200,mem=768M root=/dev/nfs
nfsroot=<your_rootfs> ip=dhcp rw

36.5.4 Results

When the ARM core is used as the bus master (define EP_SELF_IO_TEST in pcie.c
driver):

Regarding to the log listed in the following table, the data size of each TLP when the
cache is enabled, is about 4 times of the data size in write, and 2 times of the data size in
read, when the cache is disabled.

ARM core used as the bus master,
and the cache is disabled

ARM core used as the bus master,
and the cache is enabled

Data size in one write TLP 8 bytes 32 bytes

Write speed ~109 MB/s ~298 MB/s

Data size in one read TLP 32 bytes 64 bytes

Read speed ~29 MB/s ~100 MB/s

When the cache is enabled:

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 267

 PCIe EP: Starting data transfer...
 PCIe EP: Data transfer is successful, tv_count1 54840us, tv_count2
162814us.
 PCIe EP: Data write speed is 298 MB/s.
 PCIe EP: Data read speed is 100 MB/s.

The snapshot of the analyzer log is as follows:

Figure 36-3. Analyzer log for enabled cache

When the cache is disable:

 PCIe EP: Starting data transfer...
 PCIe EP: Data transfer is successful, tv_count1 149616us, tv_count2
552099us.
 PCIe EP: Data write speed is 109 MB/s.
 PCIe EP: Data read speed is 29 MB/s.

The snapshot of the write/read log is as follows:

i.MX 6Quad SD PCIe RC/EP Validation System

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

268 Freescale Semiconductor, Inc.

Figure 36-4. Write/Read log for disabled cache

Chapter 36 i.MX 6 PCI Express Root Complex Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 269

i.MX 6Quad SD PCIe RC/EP Validation System

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

270 Freescale Semiconductor, Inc.

Chapter 37
Fast Ethernet Controller (FEC) Driver

37.1 Introduction
The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet
CSMA/CD media access control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the
interface to the Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100
Mbps or 1000 Mbps related Ethernet networks.

The FEC driver supports the following features:

• Full/Half duplex operation
• Link status change detect
• Auto-negotiation (determines the network speed and full or half-duplex operation)
• Transmits features such as automatic retransmission on collision and CRC generation
• Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name
ethx. The driver auto-probes the external adaptor (PHY device).

37.2 Hardware Operation
The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to
an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII, and 10/100
Mbps RMII. In addition, the FEC supports 1000 Mbps RGMII, which uses 4-bit reduced
GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details see the FEC
chapter of the i.MX 6 Multimedia Applications Processor Reference Manual.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 271

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII and RGMII modes uses a subset of the 18 signals. These signals
are listed in table below.

Table 37-1. Pin Usage in MII, RMII and RGMII Modes

Direction EMAC Pin
Name

MII Usage RMII Usage RGMII Usage

In/Out FEC_MDIO Management Data Input/Output Management Data
Input/output

Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 Not Used Data out, bit 2

Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_CLK Transmit Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_ER Receive Error Receive Error Not Used

In FEC_RX_CLK Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_DV Receive Data Valid Receive Data Valid
and generate CRS

RXDV XOR RXERR on the falling edge
of FEC_RX_CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2

In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The
FEC hardware operation can be divided in the parts listed below. For detailed information
consult the i.MX 6 Multimedia Applications Processor Reference Manual.

• Transmission-The Ethernet transmitter is designed to work with almost no
intervention from software. Once ECR[ETHER_EN] is asserted and data appears in
the transmit FIFO, the Ethernet MAC is able to transmit onto the network. When the
transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic
asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start
frame delimiter (SFD), and then the frame information from the FIFO. However, the
controller defers the transmission if the network is busy (FEC_CRS asserts).

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

272 Freescale Semiconductor, Inc.

• Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If the transmission begins
after waiting an additional 36 bit times (96 bit times after carrier sense originally
became inactive), both buffer (TXB) and frame (TXF) interrupts may be generated as
determined by the settings in the EIMR.

• Reception-The FEC receiver is designed to work with almost no intervention from
the host and can perform address recognition, CRC checking, short frame checking,
and maximum frame length checking. When the driver enables the FEC receiver by
asserting ECR[ETHER_EN], it immediately starts processing receive frames. When
FEC_RX_DV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD
is valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is
not found, the frame is ignored. In MII mode, the receiver checks for at least one
byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is
detected prior to the SFD byte, the frame is ignored.

• After the first six bytes of the frame have been received, the FEC performs address
recognition on the frame. During reception, the Ethernet controller checks for various
error conditions and once the entire frame is written into the FIFO, a 32-bit frame
status word is written into the FIFO. This status word contains the M, BC, MC, LG,
NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and
Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the
receive frame is complete, the FEC sets the L bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E bit. The Ethernet controller next generates
a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a
new frame.

• Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is
generated if the corresponding bit in the interrupt mask register (EIMR) is also set.
The bit in the EIR is cleared if a one is written to that bit position; writing zero has
no effect. This register is cleared upon hardware reset. These interrupts can be
divided into operational interrupts, transceiver/network error interrupts, and internal
error interrupts. Interrupts which may occur in normal operation are GRA, TXF,
TXB, RXF, RXB. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting from
internal errors are HBERR and UN. Some of the error interrupts are independently
counted in the MIB block counters. Software may choose to mask off these interrupts
as these errors are visible to network management through the MIB counters.

• PHY management-phylib was used to manage all the FEC phy related operation such
as phy discovery, link status, and state machine.MDIO bus will be created in FEC
driver and registered into the system.You can refer to Documentation/networking/
phy.txt under linux source directory for more information.

Chapter 37 Fast Ethernet Controller (FEC) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 273

37.2.1 Software Operation

The FEC driver supports the following functions:

• Module initialization-Initializes the module with the device specific structure
• Rx/Tx transmition
• Interrupt servicing routine
• PHY management
• FEC management such init/start/stop
• i.MX 6 FEC module use little-endian format

37.2.2 Source Code Structure

Table below shows the source files.

They are available in the

<ltib_dir>/rpm/BUILD/linux/drivers/net directory.

Table 37-2. FEC Driver Files

File Description

fec.h Header file defining registers

fec.c Linux driver for Ethernet LAN controller

For more information about the generic Linux driver, see the <ltib_dir>/rpm/BUILD/
linux/drivers/net/fec.c source file.

37.2.3 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./ltib -c
command when located in the <ltib dir>.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following option to enable this module:

• CONFIG_FEC is provided for this module. This option is available under:
• Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) >

FEC Ethernet controller.
• To mount NFS-rootfs through FEC, disable the other Network config in the

menuconfig if need.

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

274 Freescale Semiconductor, Inc.

37.3 Programming Interface
Table 37-2 lists the source files for the FEC driver.

The following section shows the modifications that were required to the original Ethernet
driver source for porting it to the i.MX device.

37.3.1 Device-Specific Defines

Device-specific defines are added to the header file (fec.h) and they provide common
board configuration options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For
example,

/*
 * Define the buffer descriptor structure.
 */
struct bufdesc {
 unsigned short cbd_datlen; /* Data length */
 unsigned short cbd_sc; /* Control and status info */
 unsigned long cbd_bufaddr; /* Buffer address */
#ifdef CONFIG_ENHANCED_BD
 unsigned long cbd_esc;
 unsigned long cbd_prot;
 unsigned long cbd_bdu;
 unsigned long ts;
 unsigned short res0[4];
#endif
};
/*
 * Define the register access structure.
 */
#define FEC_IEVENT 0x004 /* Interrupt event reg */
#define FEC_IMASK 0x008 /* Interrupt mask reg */
#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII_DATA 0x040 /* MII manage frame reg */
#define FEC_MII_SPEED 0x044 /* MII speed control reg */
#define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC_R_CNTRL 0x084 /* Receive control reg */
#define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */
#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */
#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */
#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */
#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */
#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */
#define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */
#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */
#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
#define FEC_R_DES_START 0x180 /* Receive descriptor ring */
#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */
#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */

Chapter 37 Fast Ethernet Controller (FEC) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 275

#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK config register */
#define FEC_MIIGSK_ENR 0x308 /* MIIGSK enable register */

37.3.2 Getting a MAC Address

The following statement gets the MAC address through the OCOTP (IC Identification)
by default for i.MX 6.

The MAC address can be set through bootloader such as u-boot. FEC driver will use it to
confiure the MAC address for network devices. i.MX 6 user needs to provide MAC
address by kernel command line so that user can use sb_loader to load kernel and run it
without bootloader interaction.

Due to certain pin conflicts (FEC RMII mode need to use GPIO_16 or RGMII_TX_CTL
pin as reference clock input/output channel), the one of the both pins cannot connect to
branch lines for other modules use because the branch lines have serious influence on
clock.

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

276 Freescale Semiconductor, Inc.

Chapter 38
ENET IEEE-1588 Driver

38.1 Hardware Operation
ENET IEEE-1588 driver performs a set of functions that enabling precise
synchronization of clocks in network communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies
with the IXXAT stack interfaces.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the
ENET MAC is combined with a time-stamping module to support precise time stamping
of incoming and outgoing frames. 1588 Support is enabled when the register bit
ENA_1588 is set to '1'.

Figure 38-1. IEEE 1588 Functions Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 277

38.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for
example, the MAC driver) should detect 1588 event frames and set the signal
ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0)
with the frame sequence number (tx_ts_id(3:0)) and the transmit status. The transmit
status bit tx_ts_stat (5) indicates that the application had the ff_tx_ts_frm signal asserted
for the frame.

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame
in the register TS_TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate
that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal
when it transmits the frame it needs a timestamp for and then waits on the EIR
(TS_AVAIL) interrupt bit to know when the timestamp is available. It then can read the
timestamp from the TS_TIMESTAMP register. This is done for all event frames; other
frames do not use the ff_tx_ts_frm indicator and hence do not interfere with the
timestamp capture.

38.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD
field is detected and provides the captured timestamp on ff_rx_ts(31:0). This is done for
all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame
into the corresponding field within the receive descriptor for software access.

38.2 Software Operation
The 1588 Driver has the functions listed below:

• Module initialization-Initializes the module with the device specific structure, and
registers a character driver.

• IXXAT stack interface-Respond to protocol stackís command by IOCTL routine,
such as GET_TX_TIMESTAMP, SET_RTC_TIME.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

278 Freescale Semiconductor, Inc.

• Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The
driver shares interrupt servicing routine with FEC driver.

• Miscellaneous routines-Maintain the timestamp circle queue.

38.2.1 Source Code Structure

Table below lists the source files available in the <ltib_dir>/rpm/BUILD/linux/drivers/net
directory.

Table 38-1. ENET 1588 File List

File Description

fec_1588.h Header file defining registers

fec_1588.c Linux driver for ENET 1588 timer

For more information about the generic Linux driver, see the <ltib_dir>/rpm/BUILD/
linux/drivers/net/fec_1588.c source file.

38.2.2 Linux Menu Configuration Options

To get to the ENET 1588 configuration, use the command ./ltib -c when located in the
<ltib dir>.

In the screen, select Configure Kernel, exit, and a new screen appears.

The CONFIG_FEC_1588 Linux kernel configuration is provided for this module. This
option is available under Device Drivers > Network device support > Ethernet (10 or 100
Mbit) > Enable FEC 1588 timestamping.

38.3 Programming Interface
The 1588 driver complies with the IXXAT protocol stack interface.

Stack-specific defines are added to the header file (fec_1588.h).

38.3.1 IXXAT Specific Data structure Defines

Protocol-specific defines are added to the header file (fec_1588.h).

Chapter 38 ENET IEEE-1588 Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 279

/* PTP standard time representation structure */
struct ptp_time{
 u64 sec; /* seconds, unsigned */
 u32 nsec; /* nanoseconds, signed */
};
/* interface for PTP driver command GET_TX_TIME */
struct ptp_ts_data {
 /* PTP version */
 u8 version;
 /* PTP source port ID */
 u8 spid[10];
 /* PTP sequence ID */
 u16 seq_ID;
 /* PTP message type */
 u8 message_type;
 /* PTP timestamp */
 ptp_time ts;
};
/* interface for PTP driver command SET_RTC_TIME/GET_CURRENT_TIME */
struct ptp_rtc_time {
 ptp_time rtc_time;
};
/* interface for PTP driver command SET_COMPENSATION */
struct ptp_set_comp {
 u32 drift;
};
/* interface for PTP driver command GET_ORIG_COMP */
struct ptp_get_comp {
 /* the initial compensation value */
 u32 dw_origComp;
 /* the minimum compensation value */
 u32 dw_minComp;
 /*the max compensation value*/
 u32 dw_maxComp;
 /*the min drift applying min compensation value in ppm*/
 u32 dw_minDrift;
 /*the max drift applying max compensation value in ppm*/
 u32 dw_maxDrift;
};
/* PTP default message type */
#define DEFAULT_msg_Sync 0x0
#define DEFAULT_msg_Delay_Req 0x1
#define DEFAULT_msg_Peer_Delay_Req 0x2
#define DEFAULT_msg_Peer_Delay_Resp 0x3
/* PTP message version */
#define PTP_1588_MSG_VER_1 1
#define PTP_1588_MSG_VER_2 2

38.3.2 IXXAT IOCTL Commands Defines

Command: PTP_GET_TX_TIME

Description: command provides the timestamp of the transmit packet with specific PTP
sequence ID and returns the timestamp, the sender port-ID, the PTP version, and the
message type through the ptp_ts_data structure.

Command: PTP_GET_RX_TIME

Description: command provides the timestamp of the receive packet with specific PTP
sequence ID and returns the timestamp, the sender port-ID, the PTP version, and the
message type, through the ptp_ts_data structure.

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

280 Freescale Semiconductor, Inc.

Command: PTP_SET_RTC_TIME

Description: command sets the RTC time register with provided PTP time through the
ptp_rtc_time structure.

Command: PTP_SET_COMPENSATION

Description: command sets the drift compensation with provided compensation value
through the ptp_set_comp structure.

Command: PTP_GET_CURRENT_TIME

Description: command provides the current RTC time and returns the timestamp through
the ptp_rtc_time structure.

Command: PTP_FLUSH_TIMESTAMP

Description: command flushes the transmit and receive timestamp queues.

Command: PTP_GET_ORIG_COMP

Description: command provides the original frequency compensation, minimum
frequency compensation, maximum frequency compensation, minimum drift and
maximum drift of RTC through the ptp_get_comp structure.

Chapter 38 ENET IEEE-1588 Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 281

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

282 Freescale Semiconductor, Inc.

Chapter 39
Universal Asynchronous Receiver/Transmitter
(UART) Driver

39.1 Introduction
The low-level UART driver interfaces the Linux serial driver API to all the UART ports.

It has the following features:

• Interrupt-driven and SDMA-driven transmit/receive of characters
• Standard Linux baud rates up to 4 Mbps
• Transmit and receive characters with 7-bit and 8-bit character lengths
• Transmits one or two stop bits
• Supports TIOCMGET IOCTL to read the modem control lines. Only supports the

constants TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only
• Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants

TIOCM_RTS and TIOCM_DTR only
• Odd and even parity
• XON/XOFF software flow control. Serial communication using software flow

control is reliable when communication speeds are not too high and the probability of
buffer overruns is minimal

• CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow

• Send and receive break characters through the standard Linux serial API
• Recognizes frame and parity errors
• Ability to ignore characters with break, parity and frame errors
• Get and set UART port information through the TIOCGSSERIAL and

TIOCSSERIAL TTY IOCTL. Some programs like setserial and dip use this feature
to make sure that the baud rate was set properly and to get general information on the
device. The UART type should be set to 52 as defined in the serial_core.h header
file.

• Serial IrDA

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 283

• Power management feature by suspending and resuming the URT ports
• Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttymxc0 to /dev/ttymxc1.
Autobaud detection is not supported.

NOTE
If you want to use the DMA support for UART please also
enable the RTS/CTS for it. The DMA may be abnormal if you
do not enable the RTS/CTS.

39.2 Hardware Operation
Refer to the i.MX 6Solo/6DualLite Applications Processor Reference Manual to
determine the number of UART modules available in the device.

Each UART hardware port is capable of standard RS-232 serial communication and has
support for IrDA 1.0.

Each UART contains a 32-byte transmitter FIFO and a 32-half-word deep receiver FIFO.
Each UART also supports a variety of maskable interrupts when the data level in each
FIFO reaches a programmed threshold level and when there is a change in state in the
modem signals. Each UART can be programmed to be in DCE or DTE mode.

39.2.1 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations
that are common across UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART
port information and a set of control functions to the core UART driver. These functions
are implemented as a low-level interface between the Linux OS and the UART hardware.
They cannot be called from other drivers or from a user application. The control
functions used to control the hardware are passed to the core driver through a structure
called uart_ops, and the port information is passed through a structure called uart_port.
The low level driver is also responsible for handling the various interrupts for the UART
ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration
options are provided in the mxc_uart.h header file. The user can specify the size of the
DMA receive buffer. The minimum size of this buffer is 512 bytes. The size should be a
multiple of 256. The driver breaks the DMA receive buffer into smaller sub-buffers of

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

284 Freescale Semiconductor, Inc.

256 bytes and registers these buffers with the DMA system. DMA transmit buffer size is
fixed at 1024 bytes. The size is limited by the size of the Linux UART transmit buffer
(1024).

The driver requests two DMA channels for the UARTs that need DMA transfer. On a
receive transaction, the driver copies the data from the DMA receive buffer to the TTY
Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer
to the DMA transmit buffer and sends this buffer to the DMA system. The user should
use hardware-driven hardware flow control when using DMA data transfer. For more
information, see the Linux documentation on the serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow
control and hardware-driven hardware flow control. The hardware flow control method
can be configured using the options provided in the header file. The user has the
capability to de-assert the CTS line using the available IOCTL calls. If the user wishes to
assert the CTS line, then control is transferred back to the receiver, as long as the driver
has been configured to use hardware-driven hardware flow control.

39.2.2 Driver Features

The UART driver supports the following features:

• Baud rates up to 4 Mbps
• Recognizes frame and parity errors only in interrupt-driven mode; does not recognize

these errors in DMA-driven mode
• Sends, receives, and appropriately handles break characters
• Recognizes the modem control signals
• Ignores characters with frame, parity, and break errors if requested to do so
• Implements support for software and hardware flow control (software-controlled and

hardware-controlled)
• Get and set the UART port information; certain flow control count information is not

available in hardware-driven hardware flow control mode
• Implements support for Serial IrDA
• Power management
• Interrupt-driven and DMA-driven data transfer

39.2.3 Source Code Structure

Table below shows the UART driver source files that are available in the directory:

Chapter 39 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 285

<ltib_dir>/rpm/BUILD/linux/drivers/tty/serial.

Table 39-1. UART Driver Files

File Description

imx.c Low level driver

Table below shows the header files associated with the UART driver.

Table 39-2. UART Global Header Files

File Description

<ltib_dir>/rpm/BUILD/linux/ arch/arm/plat-mxc/
include/mach/imx-uart.h

UART header that contains UART configuration data structure definitions

39.3 Configuration
This section discusses configuration options associated with Linux, chip configuration
options, and board configuration options.

39.3.1 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the ./ltib -c
command when located in the <ltib dir>. On the screen displayed, select Configure the
Kernel and exit. When the next screen appears, select the following options to enable this
module:

• CONFIG_SERIAL_IMX -Used for the UART driver for the UART ports. In
menuconfig, this option is available under

Device Drivers > Character devices > Serial drivers > IMX serial port support.

By default, this option is Y.

• CONFIG_SERIAL_IMX_CONSOLE-Chooses the Internal UART to bring up the
system console. This option is dependent on the CONFIG_SERIAL_IMX option. In
the menuconfig this option is available under

Device Drivers > Character devices > Serial drivers > IMX serial port support >
Console on IMX serial port

By default, this option is Y.

Configuration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

286 Freescale Semiconductor, Inc.

39.3.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

39.3.3 Chip Configuration Options

39.3.4 Board Configuration Options

For i.MX 6DualLite, the board specific configuration options for the driver is set within:

<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx6/board-mx6q_arm2.c

39.4 Programming Interface
The UART driver implements all the methods required by the Linux serial API to
interface with the UART port.

The driver implements and provides a set of control methods to the Linux core UART
driver. For more information about the methods implemented in the driver, see the API
document.

39.4.1 Interrupt Requirements

The UART driver interface generates only one interrupt.

The status is used to determine which kinds of interrupt occurs, such as RX or TX.

With the SDMA enabled, the DMA RX interrupt occurs only when the received data fills
all the 4K buffer. The DMA TX interrupt occurs when the data is sent out.

Chapter 39 Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 287

Programming Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

288 Freescale Semiconductor, Inc.

Chapter 40
AR6003 WiFi

40.1 Hardware Operation
The officially supported WiFi chip with FSL BSP is AR6003 from Atheros.

The Atheros AR6003 is a single chip, small form factor IEEE 802.11 a/b/g/n MAC/
baseband/ radio optimized for low-power mobile applications.

40.1.1 Software Operation

FSL BSP uses the open source ath6kl driver from kernel 3.0.35 for AR6003.

40.1.2 Driver features

AR6003 is a single stream, SDIO based 802.11 chipset from Atheros optimized for
mobile and embedded devices. ath6kl is a cfg80211 driver for AR6003 and supports both
the station and AP mode of operation.

Station mode supports 802.11 a/b/g/n with HT20 on 2.4/5GHz and HT40 only on 5GHz.
Some of the other features include WPA/WPA2,WPS, WMM, WMM-PS, and BT
coexistence. AP mode can be operated only in b/g mode with support for a subset of
features mentioned above.

The driver supports cfg80211 but comes with its own set of wext ioctls which have
historically supported some of our customers with features like BT 3.0 and AP mode of
operation.

For further details, refer to http://wireless.kernel.org/en/users/Drivers/ath6kl

The driver requires firmware that runs on the chip's network processor. The majority of it
is stored in ROM. The binaries that are downloaded and executed from RAM are as
follows:

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 289

http://wireless.kernel.org/en/users/Drivers/ath6kl

1) Patch against the code in ROM for bug fixes and feature enhancements.

2) Code to copy the data from the OTP region of the memory into RAM.

3) Calibration file carrying board specific data.

The above files need to be present in the directory '/lib/firmware/ath6k/AR6003/hw2.0/'
for the driver to initialize the chip upon enumeration. The files can be downloaded from
the link specified at the following location http://wireless.kernel.org/en/users/Drivers/
ath6kl

This driver is only provided in the interim while we work on the mac80211 replacement,
ath6k. Once the mac80211 driver achieves feature parity with the ath6kl driver, the
ath6kl will be deprecated and removed from staging.

40.1.3 Source Code Structure

The AR6003 driver source files are available in the directory, <ltib_dir>/rpm/BUILD/
linux/drivers/staging/ath6kl/

40.1.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module:

CONFIG_ATH6K_LEGACY-Build support for AR6003 support (non mac80211).

Note: There are also a few other options under CONFIG_ATH6K_LEGACY. By default
you may not need to use them. Refer to the option help for details.

Hardware Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

290 Freescale Semiconductor, Inc.

http://wireless.kernel.org/en/users/Drivers/ath6kl
http://wireless.kernel.org/en/users/Drivers/ath6kl

Chapter 41
Bluetooth Driver

41.1 Introduction
The Bluetooth driver provides synchronous and asynchronous wireless connection among
multiple devices.

The synchronous oriented channel provides voice transmission. The asynchronous
channel allows more time delay in data transmission. The synchronous and asynchronous
data transfer between the host and Bluetooth chip is performed by different hardware
interfaces. The SSI interface is used to transfer voice from the host to the Bluetooth chip.
UART or USB is used for asynchronous data communication.

Based on the wireless connection, many services can be supported by profiles defined by
the Bluetooth Group. On the i.MX platform, the A2DP and AVRCP profile is used to
play music (mp3, wav, and so forth). The FTP profile provides access to the file system
on another device. The SPP profile emulates a serial cable to provide a simply
implemented wireless replacement for the existing RS-232 based serial communications
applications. The handset profile is reserved for future support, so the SSI interface is
reserved. The UART interface is used for communication between the host and the
Bluetooth chip.

41.1.1 Hardware Operation

The platform uses the Atheros Bluetooth debug board.

Atheros Bluetooth debug board is a Bluetooth module that integrates Atheros Bluetooth
soc on it with a mini usb port used to get power supply from external USB. Also there is
a reset button on the board which is used to give a hardware reset to the SoC core.

Figure below illustrates the hardware interface between i.MX 6 and the Atheros
Bluetooth module. UART is used for data communication.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 291

Figure 41-1. Bluetooth Hardware Interface for i.MX 6Quad Platform

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

292 Freescale Semiconductor, Inc.

41.2 Software Operation
BlueCore™ Host Software (BCHS) is a Bluetooth protocol provided by a third-party
company, Cambridge Silicon Radio (CSR).

The porting of BCHS to Linux is divided into:

• A user space port, in which the BCHS protocol stack runs in user space together
with the application.

• A kernel space port, in which the BCHS protocol stack runs in kernel space and the
application runs in user space.

There are two ways to set up the user space port:

• The application and the BCHS protocol stack are running within the same process.
• The application and the BCHS protocol stack are running in two different processes.

In i.MX platform, the BCHS protocol stack runs in user space. And the application runs
in the same process, as shown in figure below.

Encoding is used to minimize the bandwidth required for transferring the audio data.
Thus, the encoding compresses the audio before transmission over the air. The A2DP
profile mandates support for SBC encoding, and other codecs, such as MP3 and WMA,
are optional. The A2DP source checks the capabilities of sink and then configures sink to
select the dedicated codec.

Chapter 41 Bluetooth Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 293

Figure 41-2. BCHS Protocol Stack

41.2.1 UART Control

For user space porting, first configure the universal asynchronous receiver transmitter
(UART). On the i.MX platforms, UART2 is used for communication between the CPU
chip and the Bluetooth chip. The BCHS protocol opens /dev/ttymxc1 and configures the
device according to profile requirements.

The minimum baud rate for the A2DP profile is 460.8 kbps; 921.6 kbps baudrate is
recommended. Table below maps the relationship between the UART baud rate and
maximum SBC bit rate.

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

294 Freescale Semiconductor, Inc.

Table 41-1. UART Mapping

Baud Rate (kbps) Max SBC bit rate (kbps)

115.2 75

230.4 150

460.8 300

600.0 400

921.6 410

The following table describes the UART configuration files.

41.2.2 Reset and Power control

Currently we use an external bluetooth debug board for the bluetooth communication,
The bt module needs an usb cable connected with it to get the power supply, also in the
debug board there is a reset button used to reset the whole bt module.

41.2.3 Configuration

To get to the Bluetooth configuration, use the command ./ltib -c when located in the <ltib
dir>. In the screen, select Configure Kernel, exit, and a new screen will appear.

The Linux kernel configuration option CONFIG_MXC_BLUETOOTH is provided for
the MXC processors. In the menuconfig this option is available under Device Drivers −>
MXC support drivers -> MXC Bluetooth support -> MXC Bluetooth support. By default,
this option is M for all architectures.

Chapter 41 Bluetooth Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 295

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

296 Freescale Semiconductor, Inc.

Chapter 42
Pulse-Width Modulator (PWM) Driver

42.1 Introduction
The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate
sound from stored sample audio images and generate tones.

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The
software module is composed of a Linux driver that allows privileged users to control the
backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

42.1.1 Hardware Operation

Figure below shows the PWM block diagram.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 297

Figure 42-1. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not
interface with any other modules inside the device except for the clock and reset inputs
from the Clock Control Module (CCM) and interrupt signals to the processor interrupt
handler. The PWM includes a single external output signal, PMWO. The PWM includes
the following internal signals:

• Three clock inputs
• Four interrupt lines
• One hardware reset line
• Four low power and debug mode signals
• Four scan signals
• Standard IP slave bus signals

42.1.2 Clocks

The clock that feeds the prescaler can be selected from:

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

298 Freescale Semiconductor, Inc.

• High frequency clock-provided by the CCM. The PWM can be run from this clock in
low power mode.

• Low reference clock-32 KHz low reference clock provided by the CCM. The PWM
can be run from this clock in the low power mode.

• Global functional clock-for normal operations. In low power modes this clock can be
switched off.

The clock input source is determined by the CLKSRC field of the PWM control register.
The CLKSRC value should only be changed when the PWM is disabled.

42.1.3 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width
of a series of pulses to the power source. One common and effective use of the PWM is
controlling the backlight of a QVGA panel with a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Table 42-1. PWM Driver Summary

Function Description

struct pwm_device *pwm_request(int pwm_id, const char *label) Request a PWM device

void pwm_free(struct pwm_device *pwm) Free a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration

int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

The function pwm_config() includes most of the configuration tasks for the PWM
module, including the clock source option, and period and duty cycle of the PWM output
signal. It is recommended to select the peripheral clock of the PWM module, rather than
the local functional clock, as the local functional clock can change.

42.1.4 Driver Features

The PWM driver includes the following software and hardware support:

• Duty cycle modulation
• Varying output intervals
• Two power management modes-full on and full of

Chapter 42 Pulse-Width Modulator (PWM) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 299

42.1.5 Source Code Structure

Table below lists the source files and headers available in the following directories:

<ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxc/pwm.c
<ltib_dir>/rpm/BUILD/linux/include/linux/pwm.h

Table 42-2. PWM Driver Files

File Description

pwm.h Functions declaration

pwm.c Functions definition

42.1.6 Menu Configuration Options

To get to the PWM driver, use the command ./ltib -c when located in the <ltib dir>. On
the screen displayed, select Configure the kernel and exit. When the next screen appears
select the following option to enable the PWM driver:

• System Type > Enable PWM driver
• Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic
PWM based Backlight Driver

Introduction

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

300 Freescale Semiconductor, Inc.

Chapter 43
Watchdog (WDOG) Driver

43.1 Introduction
The Watchdog Timer module protects against system failures by providing an escape
from unexpected hang or infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt
capability.

43.1.1 Hardware Operation

Once the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the
WDOG either asserts the wdog_b signal or a wdog_rst_b system reset signal, depending
on software configuration. The watchdog module cannot be deactivated once it is
activated.

43.1.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for
a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.
Since some bits of the WGOD registers are only one-time programmable after booting,
ensure these registers are written correctly.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 301

43.2 Generic WDOG Driver
The generic WGOD driver is implemented in the <ltib_dir>/rpm/BUILD/linux/drivers/
watchdog/imx2_wdt.c file.

It provides functions for various IOCTLs and read/write calls from the user level program
to control the WDOG.

43.2.1 Driver Features

This WDOG implementation includes the following features:

• Generates the reset signal if it is enabled but not serviced within a predefined timeout
value (defined in milliseconds in one of the WDOG source files)

• Does not generate the reset signal if it is serviced within a predefined timeout value
• Provides IOCTL/read/write required by the standard WDOG subsystem

43.2.2 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the ./ltib -c
command when located in the <ltib dir>. On the screen displayed, select Configure the
Kernel and exit. When the next screen appears, select the following option to enable this
module:

• CONFIG_IMX2_WDT-Enables Watchdog timer module. This option is available
under Device Drivers > Watchdog Timer Support > IMX2+ Watchdog.

43.2.3 Source Code Structure

Table below shows the source files for WDOG drivers that are in the following directory:

<ltib_dir>/rpm/BUILD/linux/drivers/watchdog.

Table 43-1. WDOG Driver Files

File Description

imx2_wdt.c WDOG function implementations

Generic WDOG Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

302 Freescale Semiconductor, Inc.

Watchdog system reset function is located under <ltib_dir>/rpm/BUILD/linux/arch/arm/
plat-mxc/system.c

43.2.4 Programming Interface

The following IOCTLs are supported in the WDOG driver:

• WDIOC_GETSUPPORT
• WDIOC_GETSTATUS
• WDIOC_GETBOOTSTATUS
• WDIOC_KEEPALIVE
• WDIOC_SETTIMEOUT
• WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see <ltib_dir>/rpm/BUILD/linux/
Documentation/watchdog.

Chapter 43 Watchdog (WDOG) Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 303

Generic WDOG Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

304 Freescale Semiconductor, Inc.

Chapter 44
OProfile

44.1 Introduction
OProfile is a system-wide profiler for Linux systems, capable of profiling all running
code at low overhead.

OProfile is released under the GNU GPL. It consists of a kernel driver, a daemon for
collecting sample data, and several post-profiling tools for turning data into information.

44.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of
a wide variety of interesting statistics, which can also be used for basic time-spent
profiling.

All code is profiled: hardware and software interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

44.1.2 Features

OProfile has the following features.

• Unobtrusive-No special recompilations or wrapper libraries are necessary. Even
debug symbols (-g option to gcc) are not necessary unless users want to produce
annotated source. No kernel patch is needed; just insert the module.

• System-wide profiling-All code running on the system is profiled, enabling analysis
of system performance.

• Performance counter support-Enables collection of various low-level data and
association for particular sections of code.

• Call-graph support-With an 2.6 kernel, OProfile can provide gprof-style call-graph
profiling data.

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 305

• Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling
frequency and workload.

• Post-profile analysis-Profile data can be produced on the function-level or
instruction-level detail. Source trees, annotated with profile information, can be
created. A hit list of applications and functions that utilize the most CPU time across
the whole system can be produced.

• System support-Works with almost any 2.2, 2.4 and 2.6 kernels, and works on based
platforms.

44.1.3 Hardware Operation

OProfile is a statistical continuous profiler.

In other words, profiles are generated by regularly sampling the current registers on each
CPU (from an interrupt handler, the saved PC value at the time of interrupt is stored), and
converting that runtime PC value into something meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of
which task was running at the time of the interrupt, and converting the values into a file
offset against a particular binary file. Each PC value is thus converted into a tuple (group
or set) of binary-image offset. The userspace tools can use this data to reconstruct where
the code came from, including the particular assembly instructions, symbol, and source
line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and
how often and, more often than not, this statistical approximation is good enough to
reflect reality. In common operation, the time between each sample interrupt is regulated
by a fixed number of clock cycles. This implies that the results reflect where the CPU is
spending the most time. This is a very useful information source for performance
analysis.

The ARM CPU provides hardware performance counters capable of measuring these
events at the hardware level. Typically, these counters increment once per each event and
generate an interrupt on reaching some pre-defined number of events. OProfile can use
these interrupts to generate samples and the profile results are a statistical approximation
of which code caused how many instances of the given event.

44.2 Software Operation

Software Operation

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

306 Freescale Semiconductor, Inc.

44.2.1 Architecture Specific Components

OProfile supports the hardware performance counters available on a particular
architecture. Code for managing the details of setting up and managing these counters can
be located in the kernel source tree in the relevant <ltib_dir>/rpm/BUILD/linux/arch/arm/
oprofile directory. The architecture-specific implementation operates through filling in
the oprofile_operations structure at initialization. This provides a set of operations, such
as setup(), start(), stop(), and so on, that manage the hardware-specific details the
performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample().
This is where a particular sample taken at interrupt time is fed into the generic OProfile
driver code.

44.2.2 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from
userspace at /dev/oprofile. This consists of small files for reporting and receiving
configuration from userspace, as well as the actual character device that the OProfile
userspace receives samples from. At setup() time, the architecture-specific code may add
further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various
OProfile events.

44.2.3 Generic Kernel Driver

The generic kernel driver resides in <ltib_dir>/rpm/BUILD/linux/drivers/oprofile/, and
forms the core of how OProfile operates in the kernel. The generic kernel driver takes
samples delivered from the architecture-specific code (through oprofile_add_sample()),
and buffers this data (in a transformed configuration) until releasing the data to the
userspace daemon through the /dev/oprofile/buffer character device.

44.2.4 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to
the disk. It takes the single data stream from the kernel and logs sample data against a
number of sample files (available in /var/lib/oprofile/samples/current/). For the benefit of

Chapter 44 OProfile

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 307

the separate functionality, the names and paths of these sample files are changed to
reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that is, changes
in the running of the system do not invalidate stored data). This enables the post-profiling
tools to run on this data at any time (assuming the original binary files are still available
and unchanged).

44.2.5 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the
post-profiling tools. In general, they collate a subset of the available sample files, load
and process each one correlated against the relevant binary file, and produce user
readable information.

44.3 Requirements
OProfile has the following requirements.

• Add Oprofile support with Cortex-A8 Event Monitor

44.3.1 Source Code Structure

Oprofile platform-specific source files are available in the directory:

<ltib_dir>/rpm/BUILD/linux/arch/arm/oprofile/

Table 44-1. OProfile Source Files

File Description

op_arm_model.h Header File with the register and bit definitions

common.c Source file with the implementation required for all platforms

The generic kernel driver for Oprofile is located under <ltib_dir>/rpm/BUILD/linux/
drivers/oprofile/

44.3.2 Menu Configuration Options

The following Linux kernel configurations are provided for this module.

Requirements

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

308 Freescale Semiconductor, Inc.

To get to the Oprofile configuration, use the command ./ltib -c from the <ltib dir>. On the
screen, first go to Package list and select oprofile. Then return to the first screen and,
select Configure Kernel, then exit, and a new screen appears.

• CONFIG_OPROFILE-configuration option for the oprofile driver. In the
menuconfig this option is available under

• General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling
(EXPERIMENTAL)

44.3.3 Programming Interface

This driver implements all the methods required to configure and control PMU and L2
cache EVTMON counters.

More information, see the Linux document generated from build: make htmldocs.

44.3.4 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The
latency requirements are not needed.

The rate at which interrupts are generated depends on the event.

Chapter 44 OProfile

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 309

Requirements

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

310 Freescale Semiconductor, Inc.

Chapter 45
CAAM (Cryptographic Acceleration and Assurance
Module)

45.1 CAAM Device Driver Overview
This section discusses implementation specifics of the kernel driver components
supporting CAAM (Cryptographic Acceleration and Assurance Module) within the Linux
kernel.

CAAM's base driver packaging can be categorized on two distinct levels:

• Configuration and Job Execution Level
• API Interface Level

Configuration and Job Execution Level consists of:

• a control and configuration module which maps the main register page and writes
global or system required configuration information.

• a module that feeds jobs through job rings, and reports status.

API Interface Level consists of:

• An interface to the Scatterlist Crypto API supporting asynchronous single-pass
authentication-encryption operations, and common blockciphers - caamalg.

• An interface to the Scatterlist Crypto API supporting asynchronous hashes - caamhash.
• An interface to the hwrng API supporting use of the Random Number Generator -

caamrng.

45.2 Configuration and Job Execution Level
This section has two parts:

• Control/Configuration Driver
• Job Ring Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 311

45.3 Control/Configuration Driver
The control and configuration driver is responsible for initializing and setting up the
master register page, initializing early-on feature initialization, providing limited debug
and monitoring capability, and generally ensuring that all other dependent driver
subsystems can connect to a correctly-configured device.

Step by step, it performs the following actions at startup:

• Allocates a private storage block for this level.
• Maps a virtual address to the full CAAM register page.
• Maps a virtual address for the SNVS register page.
• Maps a virtual (cache coherent) address for Secure Memory.
• Registers the security violation interrupt.
• Selects the correct DMA address size for the platform, and sets DMA address masks

to match.
• Identifies other pertinent interrupt connections
• Initializes all job ring instances
• If the system configuration includes a DPAA Queue Interface, that interface has

frame-pop enabled.

NOTE
i.MX 6 configurations do not contain this logic.

• If the instance contains a TRNG, it's oscillator/entropy configuration is set and then
"kickstarted".

• Configuration information is sent to the system console to indicate that the driver is
alive, and what configuration it has assumed.

• If CONFIG_DEBUG_FS is selected in the kernel configuration, then entries are
added to enable debugfs views to useful registers in the performance monitor.
Register views are accessible under the caam/ctl directory at the debugfs root entry.

45.4 Job Ring Driver
The Job Ring driver is responsible for providing job execution service to higher-level
drivers. It takes care of overall management of both input and output rings and interrupt
service driving the output ring.

One driver call is available for higher layers to use for queueing jobs to a ring for
execution:

Control/Configuration Driver

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

312 Freescale Semiconductor, Inc.

int caam_jr_enqueue(struct device *dev, u32 *desc, void (*cbk)(struct device
*dev, u32 *desc, u32 status, void *areq), void *areq);

Arguments:

dev Pointer to the struct device associated with the job ring for use. In the current
configuration, one or more struct device entries exist in the controller's private data block,
one for each ring.

desc Pointer to a CAAM job descriptor to be executed. The driver will map the descriptor
prior to execution, and unmap it upon completion. However, since the driver can't
reasonably know anything about the data referenced by the descriptor, it is the caller's
responsibility to map/flush any of this data prior to submission, and to unmap/invalidate
data after the request completes.

cbk Pointer to a callback function that will be called when the job has completed
processing.

areq Pointer to metadata or context data associated with this request. Often, this can
contain referenced data mapping information that request postprocessing (via the
callback) can use to clean up or release resources once complete.

Callback Function Arguments:

dev Pointer to the struct device associated with the job ring for use.

desc Pointer to the original descriptor submitted for execution.

status Completion status received back from the CAAM DECO that executed the request.
Nonzero only if an error occurred. Strings describing each error are enumerated in
error.c.

areq Metadata/context pointer passed to the original request.

Returns:

• Zero on successful job submission
• -EBUSY if the input ring was full
• -EIO if driver could not map the job descriptor

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 313

45.5 API Interface Level
caamalg module provides a connection through the Scatterlist Crypto API both for
common symmetric blockciphers, and for single-pass authentication-encryption services.
This table lists all installed authentication-encryption algorithms by their common name,
driver name, and purpose. Note that certain platforms, such as i.MX 6, contain a low-
power MDHA accelerator, which cannot support SHA384 or SHA512.

Name Driver Name Purpose

authenc(hmac(md5),cbc(aes)) authenc-hmac-md5-cbc-aescaam Single-pass authentication/encryption
using MD5 and AES-CBC

authenc(hmac(sha1),cbc(aes)) authenc-hmac-sha1-cbc-aescaam Single-pass authentication/encryption
using SHA1 and AES-CBC

authenc(hmac(sha224),cbc(aes)) authenc-hmac-sha224-cbcaes-caam Single-pass authentication/encryption
using SHA224 and AES-CBC

authenc(hmac(sha256),cbc(aes)) authenc-hmac-sha256-cbcaes-caam Single-pass authentication/
encryptionusing SHA256 and AES-CBC

authenc(hmac(sha384),cbc(aes)) authenc-hmac-sha384-cbcaes-caam Single-pass authentication/encryption
using SHA384 and AES-CBC

authenc(hmac(sha512),cbc(aes)) authenc-hmac-sha512-cbcaes-caam Single-pass authentication/encryption
using SHA512 and AES-CBC

authenc(hmac(md5),cbc(des3_ede)) authenc-hmac-md5-cbcdes3_ede-caam Single-pass authentication/encryption
using MD5 and Triple-DES-CBC

authenc(hmac(sha1),cbc(des3_ede)) authenc-hmac-sha1-cbcdes3_ede-caam Single-pass authentication/encryption
using SHA1 and Triple-DES-CBC

authenc(hmac(sha224),cbc(des3_ede)) authenc-hmac-sha224-cbcdes3_ede-
caam

Single-pass authentication/encryption
using SHA224 and Triple-DES-CBC

authenc(hmac(sha256),cbc(des3_ede)) authenc-hmac-sha256-cbcdes3_ede-
caam

Single-pass authentication/encryption
using SHA256 and Triple-DES-CBC

authenc(hmac(sha384),cbc(des3_ede)) authenc-hmac-sha384-cbcdes3_ede-
caam

Single-pass authentication/encryption
using SHA384 and Triple-DES-CBC

authenc(hmac(sha512),cbc(des3_ede)) authenc-hmac-sha512-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA512 and Triple-DES-CBC

authenc(hmac(md5),cbc(des)) authenc-hmac-md5-cbc-descaam Single-pass authentication/encryption
using MD5 and Single-DES-CBC

authenc(hmac(sha1),cbc(des)) authenc-hmac-sha1-cbc-descaam Single-pass authentication/encryption
using SHA1 and Single-DES-CBC

authenc(hmac(sha224),cbc(des)) authenc-hmac-sha224-cbcdes-caam Single-pass authentication/encryption
using SHA224 and Single-DES-CBC

authenc(hmac(sha256),cbc(des)) authenc-hmac-sha256-cbcdes-caam Single-pass authentication/encryption
using SHA256 and Single-DES-CBC

authenc(hmac(sha384),cbc(des)) authenc-hmac-sha384-cbcdes-caam Single-pass authentication/encryption
using SHA384 and Single-DES-CBC

authenc(hmac(sha512),cbc(des)) authenc-hmac-sha512-cbcdes-caam Single-pass authentication/encryption
using SHA512 and Single-DES-CBC

API Interface Level

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

314 Freescale Semiconductor, Inc.

This table lists all installed symmetric key blockcipher algorithms by their common
name, driver name, and purpose.

Name Driver Name Purpose

cbc(aes) cbc-aes-caam AES with a CBC mode wrapper

cbc(des3_ede) cbc-3des-caam Triple DES with a CBC mode wrapper

cbc(des) cbc-des-caam Single DES with a CBC mode wrapper

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

The caamhashmodule provides a connection through the Scatterlist Crypto API both for
common asynchronous hashes.

This table lists all installed asynchronous hashes by their common name, driver name,
and purpose. Note that certain platforms, such as i.MX 6, contain a low-power MDHA
accelerator, which cannot support SHA384 or SHA512.

Name Driver Name Purpose

sha1 sha1-caam SHA1-160 Hash Computation

sha224 sha224-caam SHA224 Hash Computation

sha256 sha256-caam SHA256 Hash Computation

sha384 sha384-caam SHA384 Hash Computation

sha512 sha512-caam SHA512 Hash Computation

md5 md5-caam MD5 Hash Computation

hmac(sha1) hmac-sha1-caam SHA1-160 Hash-based Message
Authentication Code

hmac(sha224) hmac-sha224-caam SHA224 Hash-based Message
Authentication Code

hmac(sha256) hmac-sha256-caam SHA256 Hash-based Message
Authentication Code

hmac(sha384) hmac-sha384-caam SHA384 Hash-based Message
Authentication Code

hmac(sha512) hmac-sha512-caam SHA512 Hash-based Message
Authentication Code

hmac(md5) hmac-md5-caam MD5 Hash-based Message
Authentication Code

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 315

The caamrng module installs a mechanism to use CAAM's random number generator to
feed random data into a pair of buffers that can be accessed through /dev/hw_random.

/dev/hw_random is commonly used to feed the kernel's own entropy pool, which can be used
internally, as an entropy source for other random data "devices".

For more information regarding support for this service, see rng-tools available in http://
sourceforge.net/projects/gkernel/files/rng-tools.

45.6 Driver Configuration
Configuration of the driver is controlled by the following kernel confguration parameters
(found under Cryptographic API -> Hardware Crypto Devices):

CRYPTO_DEV_FSL_CAAM

Enables building the base controller driver and the job ring backend.

CRYPTO_DEV_FSL_CAAM_RINGSIZE

Selects the size (e.g. the maximum number of entries) of job rings. This is selectable as a
power of 2 in the range of 2-9, allowing selection of a ring depth ranging from 4 to 512
entries.

The default selection is 9, resulting in a ring depth of 512 job entries.

CRYPTO_DEV_FSL_CAAM_INTC

Enables the use of the hardware's interrupt coalescing feature, which can reduce the
amount of interrupt overhead the system incurs during periods of high utilization.
Leaving this disabled forces a single interrupt for each job completion, simplifying
operation, but increasing overhead.

CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD

If coalescing is enabled, selects the number of job completions allowed to queue before
an interrupt is raised. This is selectable within the range of 1 to 255. Selecting 1
effectively defeats the coalescing feature. Any selection of a size greater than the job ring
size will force a situation where the interrupt times out before ever raising an interrupt.

The default selection is 255.

CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD

Driver Configuration

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

316 Freescale Semiconductor, Inc.

http://sourceforge.net/projects/gkernel/files/rng-tools
http://sourceforge.net/projects/gkernel/files/rng-tools

If coalescing is enables, selects the count of bus clocks (divided by 64) before a
coalescing timeout where, if the count threshold has not been met, an interrupt is raised at
the end of the time period. The selection range is an integer from 1 to 65535.

The default selection is 2048.

CRYPTO_DEV_FSL_CAAM_CRYPTO_API

Enables Scatterlist Crypto API support for asynchronous blockciphers and for single-pass
autentication-encryption operations through the API using CAAM hardware for
acceleration.

CRYPTO_DEV_FSL_CAAM_AHASH_API

Enables Scatterlist Crypto API support for asynchronous hashing through the API using
CAAM hardware for acceleration.

CRYPTO_DEV_FSL_CAAM_RNG_API

Enables use of the CAAM Random Number generator through the hwrng API. This can
be used to generate random data to feed an entropy pool for the kernels pseudo-random
number generator.

CRYPTO_DEV_FSL_CAAM_RNG_TEST

Enables a captive test to ensure that the CAAM RNG driver is operating and buffering
random data.

45.7 Limitations
• Components of the driver do not currently build and run as modules. This may be

rectified in a future version.
• Interdependencies exist between the controller and job ring backends, therefore they

all must run in the same system partition. Future versions of the driver may separate
out the job ring back-end as a standalone module that can run independently (and
support independent API and SM instances) in it's own system partition.

• The full CAAM register page is mapped by the controller driver, and derived
pointers to selected subsystems are calculated and passed to higher-layer driver
components. Partition-independent configurations will have to map their own
subsystem pointers instead.

• Upstream variants of this driver support only Power architecture. This ARM-specific
port is not upstreamed at this time, although portions may be upstreamed at some
point.

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 317

• TRNG kickstart may need to be moved to the bootloader in a future release, so that
the RNG can be used earlier.

• The Job Ring driver has a registration and de-registration functions that are not
currently necessary (and may be rewritten in future editions to provide for shutdown
notifications to higher layers.

45.8 Limitations in the Existing Implementation Overview
This chapter describes a prototype of a Keystore Management Interface intended to
provide access to CAAM Secure Memory.

Secure memory provides a controlled and access-protected area where critical system
security parameters can be stored and processed in a running system without bus-level
exposure of clear secrets. Secrets can be imported into and exported from secure
memory, but never exported from secure memory in their cleartext form. Instead, secrets
may be exported from secure memory in a covered form, using keys never visible to the
outside.

This driver, with it's kernel-level API, exposes a basic interface to allow kernel-level
services access to secure memory functionality. It is split into two pieces:

• Keystore Initialization and Maintenance Interfaces
• Keystore Access Interface

The initialization and maintenance services exist to initialize and define the instance of a
keystore interface. Likewise, the access interface allows kernel-level services to use the
API for management of security parameters.

45.9 Initialize Keystore Management Interface
Installs a set of pointers to functions that implement an underlying physical interface to
the keystore subsystem.

In the present release, a default (and hidden) suite of functions implement this interface.
Future implementations of this API may provide for the installation of an alternate
interface. If this occurs, an alternate to this call can be provided.

void sm_init_keystore(struct device *dev);

Arguments:

Limitations in the Existing Implementation Overview

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

318 Freescale Semiconductor, Inc.

dev points to a struct device established to manage resources for the secure memory
subsystem.

45.10 Detect Available Secure Memory Storage Units
Returns the number of available units ("pages") that can be accessed by the local instance
of this driver. Intended for use as a resource probe.

u32 sm_detect_keystore_units(struct device *dev);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

Returns: Number of detected units available for use, 0 through n - 1 may be used with
subsequent calls to all other API functions.

45.11 Establish Keystore in Detected Unit
Sets up an allocation table in a detected unit that can be used for the storage of keys (or
other secrets). The unit will be divided into a series of fixed-size slots, each one of which
is marked available in the allocation table. The size of each slot is a build-time selectable
parameter.

No calls to the keystore access interface can occur until sm_establish_keystore() has been
called.

sm_establish_keystore() should follow a call to sm_detect_keystore_units().

int sm_establish_keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

Returns:

• Zero on successful return

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 319

• -EINVAL if the keystore subsystem was not initialized
• -ENOSPC if no memory was available for the allocation table and associated context

data.

45.12 Release Keystore
Releases all resources used by this keystore unit. No further calls to the keystore access
interface can be made.

void sm_release_keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

45.13 Allocate a Slot from the Keystore
Allocate a slot from the keystore for use in all other subsequent operations by the
keystore access interface.

int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32*slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

size Desired size of data for storage in the allocated slot.

slot Pointer to the variable to receive the allocated slot number, once known.

Returns:

• Zero for successful completion.
• -EKEYREJECTED if the requested size exceeds the selected slot size.

Release Keystore

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

320 Freescale Semiconductor, Inc.

45.14 Load Data into a Keystore Slot
Load data into an allocated keystore slot so that other operations (such as encapsulation)
can be carried out upon it.

int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, constu8 *key_data, u32
key_length);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

key_length Length (in bytes) of information to write to the slot.

key_data Pointer to buffer with the data to be loaded. Must be a contiguous buffer.

Returns:

• Zero for successful completion.
• -EFBIG if the requested size exceeds that which the slot can hold.

45.15 Demo Image Update
Encapsulate data written into a keystore slot as a Secure Memory Blob.

int sm_keystore_slot_encapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

inslot Slot holding the input secret, loaded into that slot by sm_keystore_slot_load().
Note that the slot containing this secret should be overwritten or deallocated as soon as
practical, since it contains cleartext at this point.

outslot Allocated slot to hold the encapsulated output as a Secure Memory Blob.

secretlen Length of the secret to be encapsulated, not including any blob storage overhead
(blob key, MAC, etc.).

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 321

keymod Key modifier component to be used for encapsulation. The key modifier allows an
extra secret to be used in the encapsulation process. The same modifier will also be
required for decapsulation.

keymodlen Lenth of key modifier in bytes.

Returns:

• Zero on success
• CAAM job status if a failure occurs

45.16 Decapsulate Data in the Keystore
Decapsulate data in the keystore into a Black Key Blob for use in other cryptographic
operations. A Black Key Blob allows a key to be used "covered" in main memory
without exposing it as cleartext.

int sm_keystore_slot_decapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen);

Arguments:

dev Points to a struct device established to manage resourcesfor the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

inslot Slot holding the input data, processed by a prior call to
sm_keystore_slot_encapsulate(), and containing a Secure Memory Blob.

outslot Allocated slot to hold the decapsulated output data in the form of a Black Key
Blob.

secretlen Length of the secret to be decapsulated, without any blob storage overhead.

keymod Key modified component specified at the time of encapsulation.

keymodlen Lenth of key modifier in bytes.

Returns:

• Zero on success
• CAAM job status if a failure occurs

Decapsulate Data in the Keystore

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

322 Freescale Semiconductor, Inc.

45.17 Read Data From a Keystore Slot
Extract data from a keystore slot back to a user buffer. Normally to be used after some
other operation (e.g. decapsulation) occurs.

int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, u32
key_length, u8 *key_data);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

slot Allocated slot to read from.

key_length Length (in bytes) of information to read from the slot.

key_data Pointer to buffer to hold the extracted data. Must be a contiguous buffer.

Returns:

• Zero for successful completion.
• -EFBIG if the requested size exceeds that which the slot can hold.

45.18 Release a Slot back to the Keystore
Release a keystore slot back to the available pool. Information in the store is wiped clean
before the deallocation occurs.

int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

slot Number of the allocated slot to be released back to the store.

Returns:

• Zero for successful completion.
• -EINVAL if an unallocated slot is specified.

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 323

Configuration of the Secure Memory Driver / Keystore API is dependent on the
following kernel configuration parameters:

CRYPTO_DEV_FSL_CAAM_SM

Turns on the secure memory driver in the kernel build.

CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE

Configures the size of a secure memory "slot".

Each secure memory unit is block of internal memory, the size of which is
implementation dependent. This block can be subdivided into a number of logical "slots"
of a size which can be selected by this value. The size of these slots needs to be set to a
value that can hold the largest secret size intended, plus the overhead of blob parameters
(blob key and MAC, typically no more than 48 bytes).

The values are selectable as powers of 2, limited to a range of 32 to 512 bytes. The
default value is 7, for a size of 128 bytes.

CRYPTO_DEV_FSL_CAAM_SM_TEST

Enables operation of a captive test / example module that shows how one might use the
API, while verifying it's functionality. The test module works along this flow:

• Creates a number of known clear keys (3 sizes).
• Allocated secure memory slots.
• Inserts those keys into secure memory slots and encapsulates.
• Decapsulates those keys into black keys.
• Enrcrypts DES, AES128, and AES256 plaintext with black keys. Since this uses

symmetric ciphers, same-key encryption/decryption results will be equivalent.
• Decrypts enciphered buffers with equivalent clear keys.
• Compares decrypted results with original ciphertext and compares. If they match, the

test reports OK for each key case tested.

Normal output is reported at the console as follows:

platform caam_sm.0: caam_sm_test: 8-byte key test match OK platform
caam_sm.0: caam_sm_test: 16-byte key test match OK platform caam_sm.0:
caam_sm_test: 32-byte key test match OK

• The secure memory driver is not implemented as a kernel module at this point in
time.

• Implementation is presently limited to kernel-mode operations.

Release a Slot back to the Keystore

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

324 Freescale Semiconductor, Inc.

• One instance is possible at the present time. In the future, when job rings can run
independently in different system partitions, a multiple instance secure memory
driver should be considered.

• All storage requests are limited to the storage size of a single slot (which is of a
build-time configurable length). It may be possible to allow a secret to span multiple
slots so long as those slots can be allocated contiguously.

• Slot size is fixed across all pages/partitions.
• Encapsulation/Decapsulation interfaces could allow for authentication to be

specified; the underlying interface does not request it.
• Encapsulation/Decapsulation interfaces return a job status; this status should be

translated into a meaningful error from errno.h

45.19 CAAM/SNVS - Security Violation Handling Interface
Overview

This chapter describes a prototype of a driver component and control interface for SNVS
Security Violations. It provides a means of installing, managing, and executing
application defined handlers meant to process security violation events as a response to
their occurrence in a system.

SNVS allows for the continuous monitoring of a number of possible attack vectors in a
running system. If the occurrence of one of these attach vectors is sensed, (e.g. a Security
Violation has been detected), SNVS can, along with erasing critical security parameters
and transitioning to a failure state. generate an interrupt indicating that the violation has
occurred. This interrupt can dispatch an application-defined routine to take cleanup action
as a consequence of the violation, such that an orderly shutdown of security services
might occur.

Therefore, the purpose of this interface is to allow system-level services to install
handlers for these types of events. This will allow the system designer to select how he
wants to respond to specific security violation causes using a simple function call written
to his system-specific requirements.

45.20 Operation
For existing platforms, 6 security violation interrupt causes are possible within SNVS. 5
of these violation causes are normally wired for use, and these causes are defined as:

• SECVIO_CAUSE_CAAM_VIOLATION - Violation detected inside CAAM/SNVS
• SECVIO_CAUSE JTAG_ALARM - JTAG activity detected

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 325

• SECVIO_CAUSE_WATCHDOG - Watchdog expiration
• SECVIO_CAUSE_EXTERNAL_BOOT - External bootload activity
• SECVIO_CAUSE_TAMPER_DETECT - Tamper detection logic triggered

Each of these causes can be associated with an application-defined handler through the
API provided with this driver. If no handler is specified, then a default handler will be
called. This handler does no more than to identify the interrupt cause to the system
console.

45.21 Configuration Interface
The following interface can be used to define or remove application-defined violation
handlers from the driver's dispatch table.

45.22 Install a Handler

int caam_secvio_install_handler(struct device *dev, enum secvio_cause
cause, void (*handler)(struct device *dev, u32 cause, void *ext), u8
*cause_description, void *ext);

Arguments:

dev Points to SNVS-owning device.

cause Interrupt source cause from the above list of enumerated causes.

handler Application-defined handler, gets called with dev, source cause, and locally-
defined handler argument

cause_description Points to a string to override the default cause name, this can be used as
an alternate for error messages and such. If left NULL, the default description string is
used. ext pointer to any extra data needed by the handler.

Returns:

• Zero on success.
• -EINVAL if an argument was invalid or unusable.

45.23 Remove an Installed Driver

int caam_secvio_remove_handler(struct device *dev, enum secvio_cause
cause);

Configuration Interface

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

326 Freescale Semiconductor, Inc.

Arguments:

dev Points to SNVS-owning device.

cause Interrupt source cause.

Returns:

• Zero on success.
• -EINVAL if an argument was invalid or unusable.

45.24 Driver Configuration CAAM/SNVS

CRYPTO_DEV_FSL_CAAM_SECVIO

Enables inclusion of Security Violation driver and configuration interface as part of the
build configuration. Note that the driver is not buildable as a module in its present form.

Chapter 45 CAAM (Cryptographic Acceleration and Assurance Module)

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

Freescale Semiconductor, Inc. 327

Driver Configuration CAAM/SNVS

i.MX 6Solo/6DualLite Linux Reference Manual, Rev. L3.0.35_4.1.0, 09/2013

328 Freescale Semiconductor, Inc.

Document Number: IMX6SDLLXRM
Rev. L3.0.35_4.1.0
09/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. ARM and ARM Cortex-A9 are registered trademarks of ARM

Limited.

© 2013 Freescale Semiconductor, Inc.

	Chapter 1: About This Book
	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 2: Introduction
	Overview
	Software Base
	Features

	Chapter 3: Machine Specific Layer (MSL)
	Introduction
	Interrupts (Operation)
	Interrupt Hardware Operation
	Interrupt Software Operation
	Interrupt Features
	Interrupt Source Code Structure
	Interrupt Programming Interface

	Timer
	Timer Software Operation
	Timer Features
	Timer Source Code Structure
	Timer Programming Interface

	Memory Map
	Memory Map Hardware Operation
	Memory Map Software Operation
	Memory Map Features
	Memory Map Source Code Structure
	Memory Map Programming Interface

	IOMUX
	IOMUX Hardware Operation
	IOMUX Software Operation
	IOMUX Features
	IOMUX Source Code Structure
	IOMUX Programming Interface
	IOMUX Control Through GPIO Module
	GPIO Hardware Operation
	Muxing Control
	PULLUP Control

	GPIO Software Operation (general)
	GPIO Implementation
	GPIO Source Code Structure
	GPIO Programming Interface

	General Purpose Input/Output(GPIO)
	GPIO Software Operation
	API for GPIO

	GPIO Features
	GPIO Module Source Code Structure
	GPIO Programming Interface 2

	Chapter 4: Smart Direct Memory Access (SDMA) API
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example

	Chapter 5: AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example

	Chapter 6: Image Processing Unit (IPU) Drivers
	Introduction
	Hardware Operation
	Software Operation
	Overview of IPU Frame Buffer Drivers
	IPU Frame Buffer Hardware Operation
	IPU Frame Buffer Software Operation
	Synchronous Frame Buffer Driver

	IPU Backlight Driver
	IPU Device Driver

	Source Code Structure
	Menu Configuration Options

	Unit Test
	Framebuffer Tests
	Video4Linux API test
	IPU Device Unit test

	Chapter 7: MIPI DSI Driver
	Introduction
	Overview of MIPI DSI IP Driver
	Overview of MIPI DSI Display Panel Driver
	Hardware Operation

	Software Operation
	MIPI DSI IP Driver Software Operation
	MIPI DSI Display Panel Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	Chapter 8: Video for Linux Two (V4L2) Driver
	Introduction
	V4L2 Capture Device
	V4L2 Capture IOCTLs
	Using the V4L2 Capture APIs

	V4L2 Output Device
	V4L2 Output IOCTLs
	Using the V4L2 Output APIs

	Source Code Structure
	Menu Configuration Options
	V4L2 Programming Interface

	Chapter 9: Electrophoretic Display Controller (EPDC) Frame Buffer Driver
	Introduction
	Hardware Operation
	Software Operation
	EPDC Frame Buffer Driver Overview
	EPDC Frame Buffer Driver Extensions
	EPDC Panel Configuration
	Boot Command Line Parameters

	EPDC Waveform Loading
	Using a Default Waveform File
	Using a Custom Waveform File

	EPDC Panel Initialization
	Grayscale Framebuffer Selection
	Enabling An EPDC Splash Screen

	Source Code Structure
	Menu Configuration Options
	Programming Interface
	IOCTLs/Functions
	Structures and Defines

	Chapter 10: Pixel Pipeline (PxP) DMA-ENGINE Driver
	Introduction
	Hardware Operation
	Software Operation
	Key Data Structs
	Channel Management
	Descriptor Management
	Completion Notification
	Limitations

	Menu Configuration Options
	Source Code Structure

	Chapter 11: Graphics Processing Unit (GPU)
	Introduction
	Driver Features
	Hardware Operation
	Software Operation
	Source Code Structure
	Library Structure
	API References
	Menu Configuration Options

	Chapter 12: Direct FB
	Introduction
	Hardware Operation

	Software Operation
	DirectFB Acceleration Architecture
	i.MX DirectFB Driver Details
	The gal_config File for i.MX DirectFB Driver

	DirectFB EGL
	Setting Up DirectFB Acceleration

	Chapter 13: HDMI Driver
	Introduction
	Hardware Operation

	Software Operation
	Core
	Video
	Display Device Registration and Initialization
	Hotplug Handling and Video Mode Changes
	Audio
	CEC

	Source Code Structure
	Linux Menu Configuration Options

	Unit Test
	Video
	Audio
	CEC

	Chapter 14: X Windows Acceleration
	Introduction
	Hardware Operation
	Software Operation
	X Windows Acceleration Architecture
	i.MX 6 Driver for X-Windows System
	i.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System
	EGL- X Library
	xorg.conf for i.MX 6
	Setup X-Windows System Acceleration

	Chapter 15: Video Processing Unit (VPU) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Defining an Application

	Chapter 16: OmniVision Camera Driver
	OV5640 Using MIPI CSI-2 interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	OV5640 Using parallel interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 17: MIPI CSI2 Driver
	Introduction
	MIPI CSI2 Driver Overview
	Hardware Operation

	Software Operation
	MIPI CSI2 Driver Initialize Operation
	MIPI CSI2 Common API Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 18: Low-level Power Management (PM) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Unit Test

	Chapter 19: PF100 Regulator Driver
	Introduction
	Hardware Operation
	Driver Features

	Software Operation
	Regulator APIs

	Driver Architecture
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options

	Chapter 20: CPU Frequency Scaling (CPUFREQ) Driver
	Introduction
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options

	Chapter 21: Dynamic Bus Frequency Driver
	Introduction
	Operation
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options

	Chapter 22: Thermal Driver
	Introduction
	Thermal Driver Overview

	Hardware Operation
	Thermal Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Unit Test

	Chapter 23: Anatop Regulator Driver
	Introduction
	Hardware Operation

	Driver Features
	Software Operation
	Regulator APIs
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options

	Chapter 24: SNVS Real Time Clock (SRTC) Driver
	Introduction
	Hardware Operation

	Software Operation
	IOCTL
	Keeping Alive in the Power Off State

	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 25: Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	ALSA Sound Driver Introduction
	SoC Sound Card
	Stereo CODEC Features
	7.1 Audio Codec Features
	AM/FM Codec Features
	Sound Card Information

	Hardware Operation
	Stereo Audio CODEC
	7.1 Audio Codec
	AM/FM Codec

	Software Operation
	ASoC Driver Source Architecture
	Sound Card Registration
	Device Open
	Platform Data
	Menu Configuration Options

	Unit Test
	Stereo CODEC Unit Test
	7.1 Audio Codec Unit Test
	AM/FM Codec Unit Test

	Chapter 26: Asynchronous Sample Rate Converter (ASRC) Driver
	Introduction
	Hardware Operation

	Software Operation
	Sequence for Memory to ASRC to Memory
	Sequence for Memory to ASRC to Peripheral

	Source Code Structure
	Linux Menu Configuration Options

	Platform Data
	Programming Interface (Exported API and IOCTLs)

	Chapter 27: The Sony/Philips Digital Interface (S/PDIF) Driver
	Introduction
	S/PDIF Overview
	Hardware Overview
	Software Overview
	ASoC layer

	S/PDIF Tx Driver
	Driver Design
	Provided User Interface

	S/PDIF Rx Driver
	Driver Design
	Provided User Interfaces

	Source Code Structure
	Menu Configuration Options
	Platform Data
	Interrupts and Exceptions
	Unit Test Preparation
	Tx test step
	Rx test step

	Chapter 28: SPI NOR Flash Memory Technology Device (MTD) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 29: MMC/SD/SDIO Host Driver
	Introduction
	Hardware Operation
	Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Platform Data
	Programming Interface
	Loadable Module Operations

	Chapter 30: NAND GPMI Flash Driver
	Introduction
	Hardware Operation

	Software Operation
	Basic Operations: Read/Write
	Error Correction
	Boot Control Block Management
	Bad Block Handling

	Source Code Structure
	Menu Configuration Options

	Chapter 31: Inter-IC (I2C) Driver
	Introduction
	I2C Bus Driver Overview
	I2C Device Driver Overview
	Hardware Operation

	Software Operation
	I2C Bus Driver Software Operation
	I2C Device Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 32: Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver
	Introduction
	Hardware Operation

	Software Operation
	SPI Sub-System in Linux
	Software Limitations
	Standard Operations
	ECSPI Synchronous Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 33: FlexCAN Driver
	Driver Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 34: Media Local Bus Driver
	Introduction
	MLB Device Module
	Supported Feature
	Modes of Operation
	MLB Driver Overview

	MLB Driver
	Supported Features
	MLB Driver Architecture
	Software Operation

	Driver Files
	Menu Configuration Options

	Chapter 35: ARC USB Driver
	Introduction
	Architectural Overview

	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	System WakeUp
	USB Wakeup usage
	How to Enable USB WakeUp System Ability
	WakeUp Events Supported by USB
	How to Close the USB Child Device Power

	Chapter 36: i.MX 6 PCI Express Root Complex Driver
	Introduction
	PCIe
	Terminology and Conventions
	PCIe Topology on i.MX 6 in PCIe RC Mode
	Features

	Linux PCI Subsystem and RC driver
	RC driver source files
	Kernel configurations

	System Resource: Memory Layout
	System Resource: Interrupt lines

	Using PCIe Endpoint and running Tests
	Ensuring PCIe System Initialization
	Tests
	Known Issues

	i.MX 6Quad SD PCIe RC/EP Validation System

	Chapter 37: Fast Ethernet Controller (FEC) Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Programming Interface
	Device-Specific Defines
	Getting a MAC Address

	Chapter 38: ENET IEEE-1588 Driver
	Hardware Operation
	Transmit Timestamping
	Receive Timestamping

	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Programming Interface
	IXXAT Specific Data structure Defines
	IXXAT IOCTL Commands Defines

	Chapter 39: Universal Asynchronous Receiver/Transmitter (UART) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure

	Configuration
	Menu Configuration Options
	Source Code Configuration Options
	Chip Configuration Options
	Board Configuration Options

	Programming Interface
	Interrupt Requirements

	Chapter 40: AR6003 WiFi
	Hardware Operation
	Software Operation
	Driver features
	Source Code Structure
	Linux Menu Configuration Options

	Chapter 41: Bluetooth Driver
	Introduction
	Hardware Operation

	Software Operation
	UART Control
	Reset and Power control
	Configuration

	Chapter 42: Pulse-Width Modulator (PWM) Driver
	Introduction
	Hardware Operation
	Clocks
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 43: Watchdog (WDOG) Driver
	Introduction
	Hardware Operation
	Software Operation

	Generic WDOG Driver
	Driver Features
	Menu Configuration Options
	Source Code Structure
	Programming Interface

	Chapter 44: OProfile
	Introduction
	Overview
	Features
	Hardware Operation

	Software Operation
	Architecture Specific Components
	oprofilefs Pseudo Filesystem
	Generic Kernel Driver
	OProfile Daemon
	Post Profiling Tools

	Requirements
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Chapter 45: CAAM (Cryptographic Acceleration and Assurance Module)
	CAAM Device Driver Overview
	Configuration and Job Execution Level
	Control/Configuration Driver
	Job Ring Driver
	API Interface Level
	Driver Configuration
	Limitations
	Limitations in the Existing Implementation Overview
	Initialize Keystore Management Interface
	Detect Available Secure Memory Storage Units
	Establish Keystore in Detected Unit
	Release Keystore
	Allocate a Slot from the Keystore
	Load Data into a Keystore Slot
	Demo Image Update
	Decapsulate Data in the Keystore
	Read Data From a Keystore Slot
	Release a Slot back to the Keystore
	CAAM/SNVS - Security Violation Handling Interface Overview
	Operation
	Configuration Interface
	Install a Handler
	Remove an Installed Driver
	Driver Configuration CAAM/SNVS

