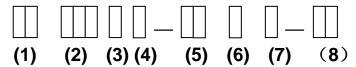


深圳市国显科技股份有限公司

Shenzhen K&D Technology Co. Ltd

				ninary Specification		
SP	ECIF	ICA	ΓΙΟΝ			
	FC)R				
	CD M	ODU	JLE			
Customer :						
Product Model:	Product Model: KD070D30-31NB-A21					
Sample code:						
Designed by	Ch	necked by	/	Approved by		
Shichao Lin	Н	uaxing Li		Juahua Zhang		
Final Approval b	y Cust	omer				
LCM Machinery	/ OK		LCM OK			
Checked By						
LCM Display C	LCM Display OK			bblem survey:		
Checked By		Approve	ed By			

^{*} The specification of "TBD" should refer to the measured value of sample . If there is difference between the design specification and measured value, we naturally shall negotiate and agree to solution with customer.


Revision History

Version	Contents	Date	Note
A0	Original	2014.08.15	
A1	Update Electrical Characteristics and Optical specifications	2014.08.29	P16
A2	Add HSF Requirements	2015.02.05	P24

Contents

No.	Item	Page
1	Numbering System	4/24
2	Scope	5/24
3	Normative Reference	5/24
4	Definitions	5/24
5	Block Diagram	7/24
6	Technology Specifications	7/24
7	Reliability Test	18/24
8	Handling Precautions	18/24
9	Precaution for use	20/24
10	Package Drawing	21/24
11	Outline Dimension	22/24
12	Bar code label and packing chest label	23/24
13	HSF Requirements	24/24

1. Numbering System

No	Definition	Specifications
(1)	TFT LCM Productor No.	KD Kingdisplay technologiy Co.,Ltd
(2)	Display monitor opposite angle line size	Unit :mmm (takes three integers)
(3)	Productor Types	D Digital photo frame / DVD GGPS MMP PMobil-Phone NNet Book
(4)	Productor Development Series No.	By two figures characters expression from 01 to 99
(5)	Interface PIN Number	By two figures characters expression from 01 to 99
(6)	With Touch Panel Or Not	TWith T/P; NWithout T/P
(7)	LCD Type	AAUO; MCMI; CCPT; BBOE; LLG; WWintek; HHSD; SCentury TTianma; YHydis; IINNOLUX; USamsung; VIVO; P Panasonic
(8)	Productor Development edition No.	By The English litters : A1~ Z999

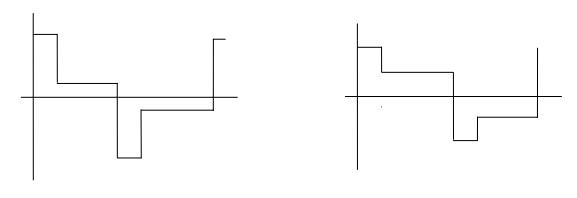
2. Scope

This specification applies to the TFT LCD module which is designed and manufactured by LCM Factory of Shenzhen K&D Technology Co. Ltd.

3. Normative Reference

GB/T4619-1996 《 Liquid Crystal Display Test Method》

GB/T2424 《 Basic environmental Testing Procedures for Electric and Electronic Products.》


GB/T2423 《Basic Testing Procedures for Electric and Electronic Products》

IEC61747-1 《SIXTH PARTGB2828`2829-87《National Standard of PRC》

4. Definitions

4.1 Definitions of Vop

The definitions of threshold voltage Vth1, Vth2 the following typical waveforms are applied on liquid crystal by the method of equalized voltage for each duty and bias.

Selected waveform 1

I non-selected waveform 1

① Vth1: The voltage which the brightness of segment indicates 50% of saturated value on the conditions of selected waveform

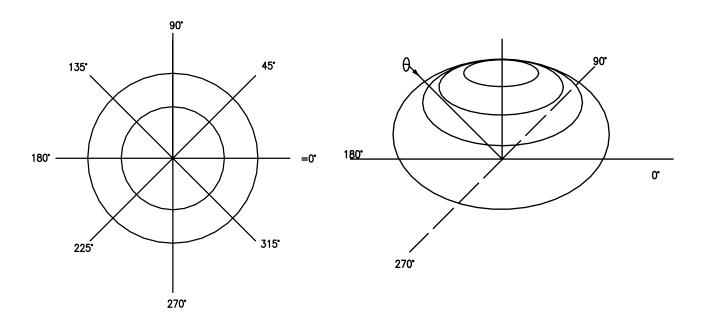
(f_f=80Hz,
$$\Phi$$
=10° θ =270° at 25°C)

② Vth2: The voltage which the brightness of segment indicates 50% of saturated value on the conditions of non-selected waveform

(f_f=80Hz,
$$\Phi$$
=10° θ =270° at 25°C)

③ Vop: (Vth1(50%)+Vth2(50%))/2 (f_f =80Hz, Φ =10° θ =270° at 25°C)

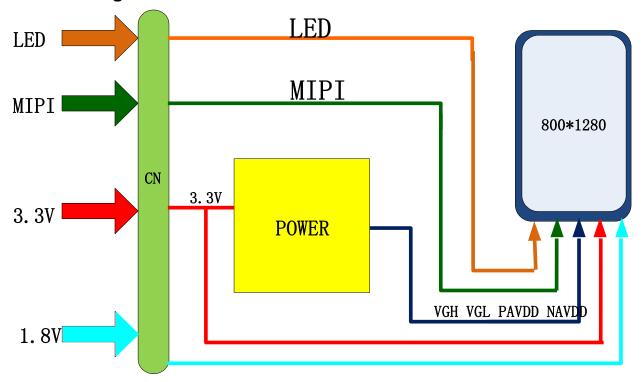
4.2 Definition of Response Time Tr, Td


- ①Tr: The time required which the brightness of segment becomes 10% from 100% when waveform is switched to selected one from non-selected one. (f_f =80Hz, Φ =10° θ =270°at 25°C)
- ②Td: The time required which the brightness of segment becomes 90% from 10% when waveform is switched to selected one from selected one. (f_f =80Hz, Φ=10°θ=270°at 25°C)

4.3 Definition of Contrast Ratio Cr


Cr=A/B

- $\ensuremath{\textcircled{1}}$ A: Segments brightness in case of non-selected waveform
- ② B: Segments brightness in case of selected waveform


4.4 Definition of Angle and Viewing Range

Angular Graph: Constrast Ratio

5. Block Diagram

6. Technology Specifications

6.1 Feature

This single-display module is suitable for use in in MID products. The LCD adopts one backlight with High brightness 20-lamps white LED.

1) Construction: 7" a-Si color TFT-LCD ,White LED backlight and FPC.

2) LCD:

- Amorphous-TFT 7-inch display, transmissive, normally Black type.
- $800(RGB) \times 1280$ dots Matrix.
- Narrow-contact ledge technique.
- 3) Video signal interface: MIPI-vedio mode(4 lanes).

6.2 Mechanical Specifications

ole mediamedi opedinodions		
Item	Specifications	Unit
LCD Size	7	inch
Dimensional outline	99.90(H) ×161.70(V) ×2.40(T)	mm
Active area	94.20(H) × 150.72(V)	mm
Pixel pitch	0.03925(H) × 0.11775(V)	um
Resolution	800(RGB) ×1280	pixel
Display mode	Normally Black	
Interface	MIPI	
Panel power consumption	0.429	W
Backlight power consumption	1.28	W
Weight	88+/-5	g
Luminance	300(Type)	cd/m2

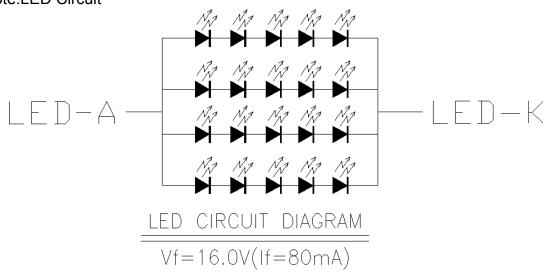
6.3 Interface Pin Connection

Pin No.	Symbol	1/0	Function	Remark
1	VLED (A)	Power	Power for LED Backlight(Anode)	
2	VLED (A)	Power	Power for LED Backlight(Anode)	
3	VLED (A)	Power	Power for LED Backlight(Anode)	
4	NC	NC	No connection	
5	FB1 (K)	Power	Power for LED Backlight(Anode)	
6	FB2 (K)	Power	Power for LED Backlight(Cathode)	
7	FB3 (K)	Power	Power for LED Backlight(Cathode)	
8	FB4 (K)	Power	Power for LED Backlight(Cathode)	
9	GND	Power	Power Ground	
10	GND	Power	Power Ground	
11	MIPI_2P	Ι	MIPI date lane 2 positive-end input	
12	MIPI_2N	Ι	MIPI date lane 2 negative-end input	
13	GND	Power	Power Ground	
14	MIPI_1P	Ι	MIPI date lane 1 positive-end input	
15	MIPI_1N	Ι	MIPI date lane 1 negative-end input	
16	GND	Power	Power Ground	
17	MIPI_CLKP	Ι	MIPI clock lane positive-end input	
18	MIPI_CLKN	Ι	MIPI clock lane negative-end input	
19	GND	Power	Power Ground	
20	MIPI_OP	Ι	MIPI date lane 0 positive-end input	
21	MIPI_ON	Ι	MIPI date lane 0 negative-end input	
22	GND	Power	Power Ground	
23	MIPI_3P	Ι	MIPI date lane 3 positive-end input	
24	MIPI_3N	Ι	MIPI date lane 3 negative-end input	
25	GND	Power	Power Ground	
26	NC	NC	No connection	
27	RESET	Ι	Global reset (1.8V)	
28	NC	NC	No connection	
29	VDD1V8	Power	Power Supply for Analog Circuit(1.8V)	
30	VDD3V3	Power	Power Supply for Analog Circuit (3.3V)	
31	VDD3V3	Power	Power Supply for Analog Circuit(3.3V)	

Connector: BL125-31RL Or Equivalent

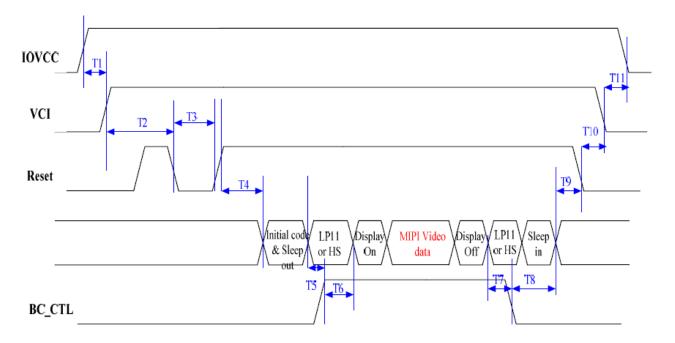
6.4 Absolute Max. Rating

Item	Symbol	Val	ues	Linit	Remark	
iteiii	Symbol	Min.	0.5 5.0 V 0.3 3.3 V 0.9 17.5 V -10 50 ℃	Remain		
	DV_DD	-0.5	5.0	V		
Power voltage	IOVCC	-0.3	3.3	V		
	V_{LED}	-0.9	17.5	V		
Operation temperature	Тор	-10	50	${\mathfrak C}$		
Storage temperature	Тѕт	-20	60	${\mathbb C}$		


6.5 Typical Operation Conditions

Item	Symbol		Values	Unit	Note	
пеш	Symbol	Min.	Тур.	Max.	Offic	Note
Power Voltage	VDD (VCI)	3.0	3.3	3.6	V	
Power voitage	IOVCC	1.7	1.8	1.9	V	
	I_{VDD}	-	130	150	mA	
Current	I_{VDDL}	ı	20	25	mA	
Consumption	I _{LED}	-	80	100	mA	

6.6 LED Back Light Specification (20 White Chips)


Item	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	Vf	lf=80mA	-	16	17.5	V
Uniformity (with L/G)	ΔB _p	lf=80mA	70	75	-	%
Luminance for LCM	/	If=80mA	250	300	-	cd/m ²

Note:LED Circuit

6.7 Power Sequence

To prevent the device damage from latch up, the power on/off sequence shown below must be followed.

Power ON/OFF Timing						
Parameters	Va	Value				
Farameters	min.	max.	Unit			
T1	0					
T2	1					
T3	1					
T4	50					
T5	120					
T6	50		ms			
T7	50					
T8	50					
T9	10					
T10	1					
T11	1					

6.8 Timing Conditions

6.8.1 MIPI Timing Characteristics

MIPI High-speed Data-clock Timing

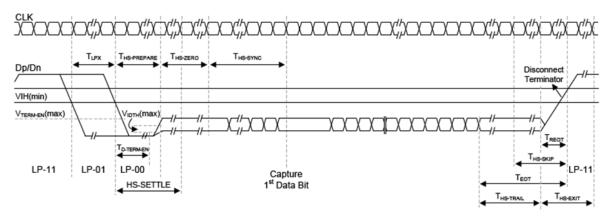
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data to Clock Setup Time[Receiver]	T _{SETUP[RX]}	0.15	_	_	UIINST	(2) (3)
Clock to Data Hold Time[Receiver]	T _{HOLD[RX]}	0.15	-	-	UIINST	(2) (3)
Data to Clock Skew (Measured at transmitter)	T _{SKEW[TX]}	-0.15	_	0.15	-	(1)

NOTE:

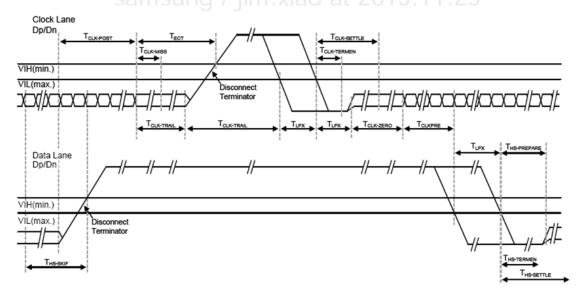
- 1. Total silicon and package delay budget of 0.3 UIINST
- 2. Total setup and hold window for receiver of 0.3* Ulinst
- $3. \quad T_{\text{SETUP[Rx]}} \text{ and } T_{\text{HOLD[RX]}} \text{ are only for RX without FPCB and connector and guaranteed by design.} \\$

© All Rights Reserved 11/24 QP-YF-028-32-A1

The timing definitions are listed below:

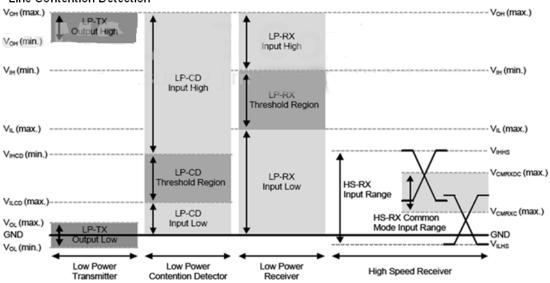

Parameter	Description	Min.	Тур.	Max.	Unit	Note
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX	-	-	60		(1) (7)
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated data lane has transitioned to LP mode. Interval is defined as the period from the end of T _{HS-TRAIL} to the beginning of T _{CLK-TRAIL}	60ns + 52xUI	-	-	ns	(6)
T _{CLK-PRE}	Time that the transmitter drives the clock lane LP-00 Line state immediately before the HS-0 line state starting the HS transmission	8	-	-	UI	(2) (6)
T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS clock transmission	38	_	95		(6)
T _{CLK-SETTLE}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions, starting from the beginning of T _{CLK-PREPARE}	95		300		(7)
T _{CLK-TERM-EN}	Time for the clock lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX}	Time for Dn to reach V _{TERM-EN}	_	38	ns	(1)
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60	-	-		(6)
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock.	300	_	-		
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX}	Time for Dn to reach V _{TERM-EN}	_	35ns + 4 × UI	_	(7)
T _{EOT}	Transmitted time interval from the start of T _{HS-TRAIL} or T _{CLK-TRAIL} , to the start of the LP-11 state following a HS burst.	_	-	105ns + n × 12 × UI	_	(4) (6)
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100	-	_		
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 line state immediately before the hs-0 line state starting the hs transmission	40ns + 4 × UI	-	85ns + 6 x UI	ns	(6)

Description	Min.	Тур.	Max.	Unit	Note
T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence.	145ns + 10 × UI	-	-		
Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of T _{HS-PREPARE}	85ns + 6 × UI	_	145ns + 10 × UI		
Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40	-	55ns + 4 × UI		(7)
Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	Max (n × 8 × UI, 60ns + n × 4 × UI)	-	-		(3) (4) (6)
	2-11	_	_	_	
Transmitted length of any low-power state period	50	\$ — -	-	ns	(5) (6)
Ratio of T _{LPX} (MASTER)/T _{LPX} (SLAVE) between master and slave side	2/3	·—:	3/2	-	
Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround.	5	x T _{LPX}			
Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround.	4	× T _{LPX}		ns	<i>(C)</i>
Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX}		2× TLPX		(6)
Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit from ULPS.	1	-	-	ms	
	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence. Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of T _{HS-PREPARE} Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst Transmitted length of any low-power state period Ratio of T _{LPX} (MASTER)/T _{LPX} (SLAVE) between master and slave side Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround. Time that the transmitter drives the Bridge state (LP-00) before releasing control during a Link Turnaround. Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit	Ths-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence. Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of Ths-PREPARE Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst Max (n × 8 × UI, 60ns + n × 4 × UI) Transmitted length of any low-power state period Ratio of T _{LPX} (MASTER)/T _{LPX} (SLAVE) between master and slave side Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround. Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit	Theorem Pare + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence. Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of Theorem Pare Pare Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst Transmitted length of any low-power state period Ratio of Tlex (MASTER)/Tlex (SLAVE) between master and slave side Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround. Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit 145ns + 10 × UI	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence. Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of T _{HS-PREPARE} Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst Max (n × 8 × UI, 60ns + n × 4	This-prepare + time that the transmitter drives the HS-0 state prior to transmitting the sync sequence. Time interval during which the HS receiver shall ignore any data lane HS transitions, starting from the beginning of This-prepare Time interval during which the HS-RX should ignore any transitions on the data lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst. Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst Max (n × 8 × UI, 60ns + n × 4 × UI) Max (n × 8 × UI, 60ns + n × 4 × UI) Transmitted length of any low-power state period Ratio of T _{LPX} (MASTER)/T _{LPX} (SLAVE) between master and slave side Time that the new transmitter drives the Bridge state (LP-00) after accepting control during a Link Turnaround. Time that the new transmitter waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround. Time that a transmitter drives a Mark-1 state prior to a Stop state in order to initiate an exit 145ns + 10 × UI

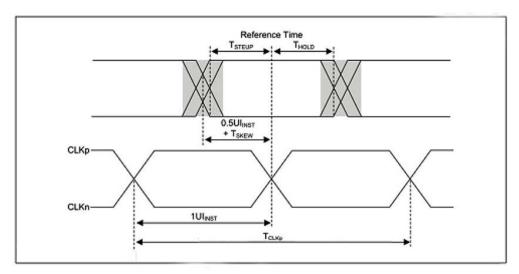

NOTE:

- The minimum value depends on the bit rate. Implementations should ensure proper operation for the entiresupportedbit rates.
- 2. Ul is the instantaneous unit interval.
- 3. If a> b then max (a, b) = a otherwise max (a, b) = b
- 4. n = 1 for forward-direction HS mode and n = 4 for reverse-direction HS mode
- TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.
- 6. Transmitter-specific parameter.
- 7. Receiver-specific parameter.

High-speed Data Transmission in Bursts


Switching the Clock Lane between Clock Transmission and Low-power Mode

6.8.2 MIPI Interface DC Characteristics


	Item	Parameter	Min.	Тур.	Max.	Unit
	Thevenin output high level	VOH	1.1	1.2	1.3	٧
LP_TX	Thevenin output low level	VOL	-50		50	mV
	Output impedance of LP transmitter	ZOLP	110	_	-	Ω
	Common-mode voltage HS receive mode	VCMRX(DC)	70	-	330	mV
	Differential input high threshold	VIDTH	-	-	70	mV
	Differential input low threshold	VIDTL	-70	_	-	mV
HS_RX	Single-ended input high voltage	VIHHS	-	_	460	mV
	Single-ended input low voltage	VILHS	-40	-	-	mV
	Single-ended threshold for HS termination enable	VTERM-EN	_	_	450	mV
	Differential input impedance	ZID	80	100	125	Ω
	Logic 1 input voltage	VIH	880	-	-	mV
LP_RX	Logic 0 input voltage, not in ULPState	VIL	_	_	550	mV
	Input hysteresis	VHYST	25	-	_	mV
LD CD	Logic 1 contention threshold	VIHCD	450	_		mV
LP_CD	Logic 0 contention threshold	VILCD	- ,	- T	200	mV

Line Contention Detection

MIPI High-Speed Data-clock Timing

Host sends a differential clock signal to the IC for data sampling. This signal is a DDR (half-rate) clock and has one transition per data bit time. The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in following figure.

6.9 Data input format

Parar	neter	Symbol	Min.	Тур.	Max.	Unit	
Frame Rate			50	60		Hz	
Clock fre	equency	1/T _{Clock}		75		MHz	
Vertical	Period	T _V	1288	1300	1535		
	Active	T _{VD}		1280		\mathbf{T}_{Line}	
Section	Blanking	T _{VB}	8	20	255		
Horizontal Section	Period	T _H	808	960	1055		
	Active	T _{HD}		800		T _{Clock}	
	Blanking	T _{HB}	8	160	255		

Horizontal	Active	Front	Frame	Vsync	Back
Blanking	Field	Porch	Time	Width	Porch
160	800	24	960	4	160

6.10 Optical specifications

Item	Symbol	Condition		Values	Unit	Remark		
ЦСП	Symbol	Condition	Min.	Тур.	Max.	Offic	IXCIIIAIK	
	θ_{L}	Φ=180°(9 o'clock)	80	85	-			
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	80	85	-	degree	Note 1	
(CR≥ 10)	θ_{T}	Φ=90°(12 o'clock)	80	85	-	uegree		
	θ_{B}	Φ=270°(6 o'clock)	80	85	-			
Response time Rise+Fall	T _{RT}		-	30	35	msec	Note 3	
Contrast ratio	CR		700	850	-	_	Note 4	
Color	W _X		0.267	0.297	0.327	-	Note 2	
chromaticity	W_{Y}	Normal θ=Φ=0°	0.297	0.327	0.357	-	Note 5 Note 6	
Luminance	L	θ - Ψ -0	250	300	-	cd/m2	Note 6	
Luminance uniformity	Yu		70	75	-	%	Note 6,7	

Note 1: Definition of viewing angle range

Normal line $\theta = \Phi = 0^{\circ}$

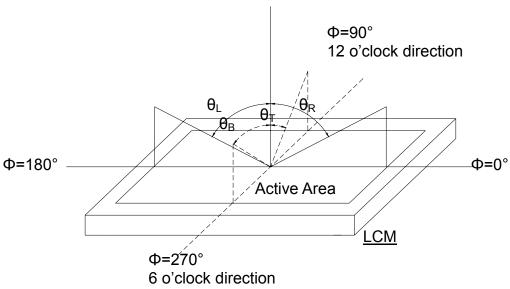


Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm ,Response time is measured by Photo detector TOPCON BM-5A, other items are measured by BM-7A/Field of view: 1° /Height: 500mm.)

Normal line $\theta=\Phi=0^{\circ}$

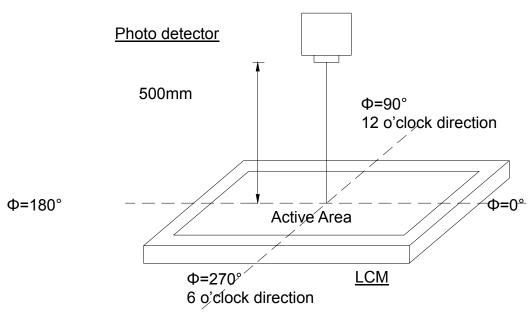


Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

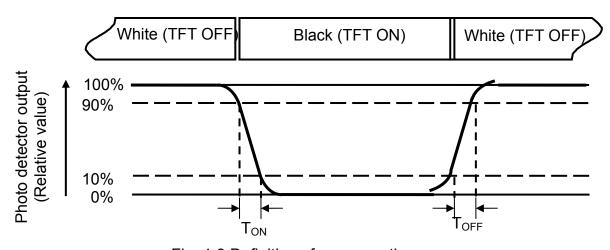


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_{LED}=80mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

each measuring area.

Luminance Uniformity
$$(Yu) = \frac{B_{min}}{B_{max}}$$

L----- Active area length W----- Active area width

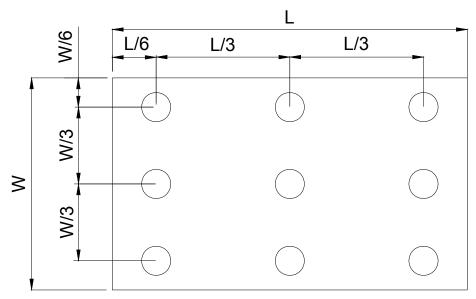


Fig. 4-4 Definition of measuring points

 $B_{\text{\scriptsize max}}\!\!:$ The measured maximum luminance of all measurement position.

B_{min}: The measured minimum luminance of all measurement position.

7. Reliability Test Conditions And Methods

Ti Konabinty Tool Conamons / Mid Mountage							
Item	Test C	Remark					
High Temperature Storage	Ta = 60°C	96 hrs					
Low Temperature Storage	Ta = -20°C	96hrs					
High Temperature Operation	Ts = 50℃	96hrs					
Low Temperature Operation	Ta = -10°C	96hrs					
High Temperature and Humidity Storage	50℃, 90%RH max.	96hrs					
Thermal Shock	-20℃~ +60℃ 10 cycl	Non-operation					
Electrostatic Discharge	Contact=±4KV, class Air=±8KV, class B	В					

8. Handling Precautions

8.1 Mounting method

The LCD panel of K&D LCD module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

8.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

Isopropyl alcohol

Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns

Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (Cl), Salfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Salfur (S) from customer, Responsibility is on customer.

8.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

8.4 packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

8.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.

8.6 storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.

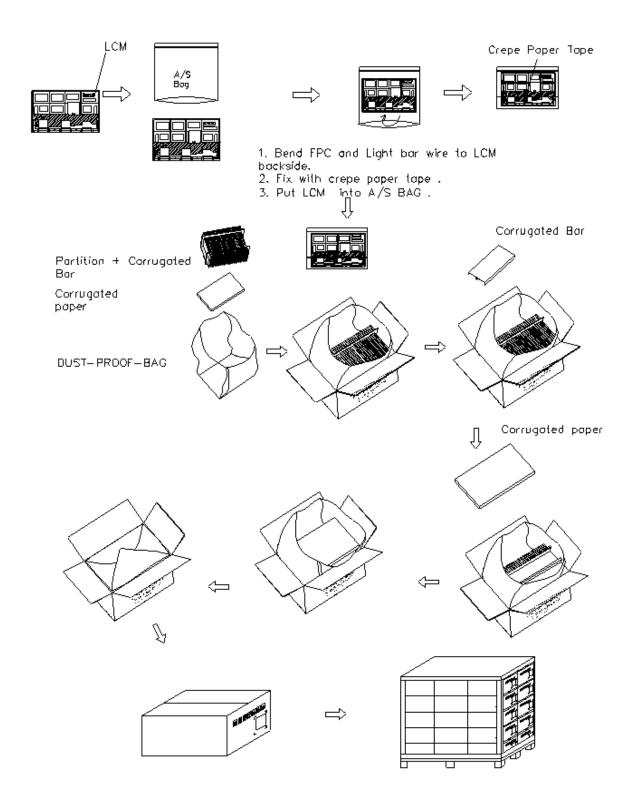
Storing with no touch on polarizer surface by the anything else.
 [It is recommended to store them as they have been contained in the inner container at the time of delivery from us

8.7 Safety

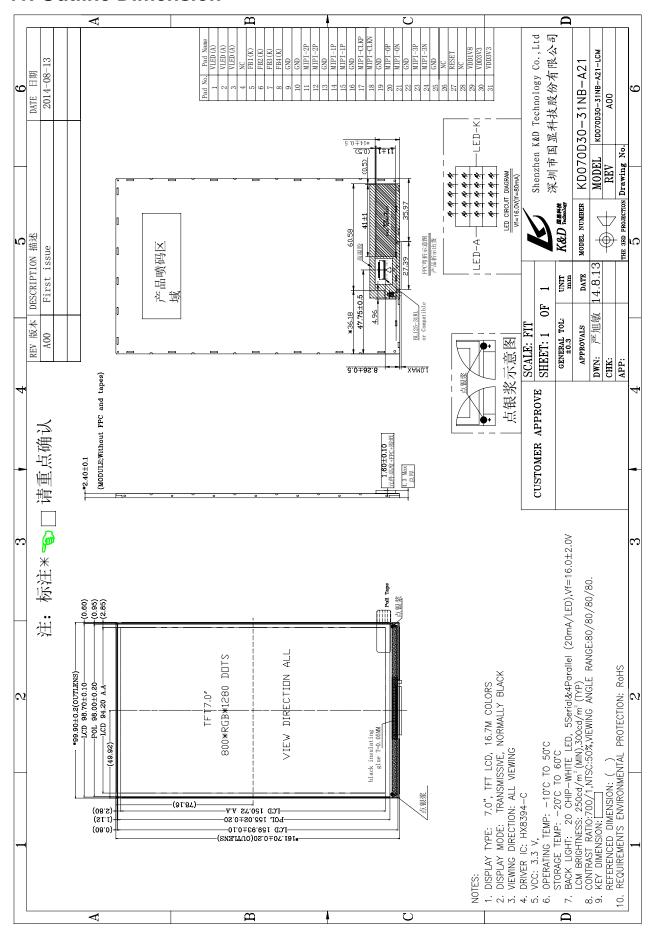
- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

9. Precaution for use

9.1


A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

9.2


On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to K&D, and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

10. Package Drawing

11. Outline Dimension

12. Bar code label and packing chest label

TBD

© All Rights Reserved 23/24 QP-YF-028-32-A1

13.	HSF	Requirements
-----	------------	--------------

RoHS	(Restriction	of	the	use	of	certain	Hazar	dous	Substance	es)
HF (Ha	alogen Free)									
	(Regulation rization and			_		Ü		Eva	luation,	

 \square Other regulations